evidence in support of the big bang: #3 olbers’ paradox

You might remember that we looked at some paradoxes when we studied special relativity earlier this term.  Here is another situation where a paradox can arise.  The German astronomer Heinrich Olbers (1758–1840) asked why the night sky was dark.  At the time, astronomers believed that the Universe was both infinite and steady state (unchanging), so it seemed like a good question.

  • Wouldn’t there be a star in any direction you chose to look?
  • Shouldn’t the light from that star prevent the night sky from looking dark?

Well, the problem is that the Universe is not infinite because it is still expanding.  The Universe also isn’t steady state because it is… expanding.  It turns out that a question posed by a follower of the infinite, steady state model of the Universe is actually a decent piece of evidence in support of the Big Bang model of the Universe.

 

Watch these two videos and see how they chip away at the paradox and show how the answers to the question turn out to support the expanding Universe model.

 

evidence in support of the big bang: #2 nucleosynthesis

As we worked through the diagram explaining the stages of the Big Bang model, we looked at a section of the diagram where the Universe was hot enough for nuclear fusion.  At this point, hydrogen nuclei were fusing together with other hydrogen nuclei to create helium nuclei.  As the Universe expanded, it cooled and further fusion was not possible.  As a result, we have a Universe with the same proportion of hydrogen to helium wherever we look: we find 75% hydrogen and 25 % helium.  This can only be the case if all of the helium was produced at the same place and the same time, i.e. in a very small, very hot Universe.

 

Hydrogen, helium and cosmic microwave background radiation from mr mackenzie on Vimeo.

 

evidence in support of the big bang: #1 CMBR

introduction to the Big Bang from mr mackenzie on Vimeo.

Georges Lemaître’s theory of an expanding Universe, which has become known as the Big Bang, was supported by Hubble’s observations.  The expanding Universe idea was challenged by influential scientists who believed the Universe was both infinite (and therefore not expanding) and steady state (unchanging).  Supporters of the Big Bang idea needed to find other evidence that could confirm their model was correct.

The cosmic microwave background radiation (CMBR) is radiation left over from the big bang.  When the universe was very young, only 380,000 years old, just as space became transparent to light, electromagnetic energy would have propagated through space for the very first time.  At this stage in its development, the temperature of the Universe would have been about 3000K. Nowadays, the temperature of space has fallen to approximately 2.7 K (that’s 2.7 K above absolute zero!) and, using Wien’s Law, we can confirm that the peak wavelength of the electromagnetic radiation is so long that the background radiation lies in the microwave portion of the em spectrum.

The CMBR was first detected in 1964 by Richard Woodrow Wilson and Arno Allan Penzias, who worked at Bell Laboratories in the USA.

Read moreevidence in support of the big bang: #1 CMBR

cosmic microwave background radiation

The cosmic microwave background radiation (CMB) is radiation left over from the big bang.  When the universe was very young, just as space became transparent to light, electromagnetic energy would have propagated through space at a much shorter wavelength.  Nowadays, the temperature of space has fallen to approximately 2.7 K (that’s 2.7 K above absolute zero!) and, using Wien’s Law, we can confirm that the peak wavelength of the electromagnetic radiation is so long that the background radiation lies in the microwave portion of the em spectrum.

The CMB was first detected in 1964 by Richard Woodrow Wilson and Arno Allan Penzias, who worked at Bell Laboratories in the USA.

Read morecosmic microwave background radiation