SECTION A

Answer questions 1-20 on the answer sheet.

1. C

2. D

3. D

4. B

5. B

6. B

7. D

8. E

9. A

10. A

11. D

12. E

13. E

14. D

15. E

16. A

17. C

18. D

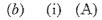
19. B

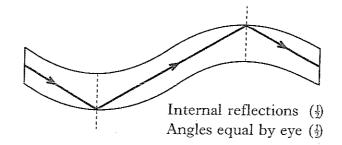
20. D

1 mark each

SECTION B

				•		Mark
21.	(a)	(i)	Steady Constant speed or speed of 9 i		Steady Constant velocity	
		(ii)	Steady constant (½) or constant ac	· 	Slowing down OR Speed decreases = $\frac{1}{2}$	
		NOTE: First ½ mark depends on second word				2
	(b)	a =	$\frac{v-u}{t}$	$\left(\frac{1}{2}\right)$		
		=	$\frac{9-0}{20}$	$(\frac{1}{2})$		
٠		=	0.45 m/s^2	$\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)$		2
	(c)	c) $d = Area under graph (\frac{1}{2})$				
		$= \frac{1}{2} \times 20 \times 9 \left(\frac{1}{2}\right) + 40 \times 9 \left(\frac{1}{2}\right) + \frac{1}{2} \times 15 \times 9 \left(\frac{1}{2}\right)$ =517.5 m $\left(\frac{1}{2}\right) \left(\frac{1}{2}\right)$				
			7-5 m 518 m 5 acceptable	20 m		3
		Gravitational Force (1/2) OR weight is balanced by (1) Independent Marks				
		(Force	e of) Friction (<u> </u>		2· (9)
						` '


- (c) If d = vt method used, this is only correct for 2nd part of distance ie $40 \times 9 = 360$ m Award $\frac{1}{2}$ mark.
- (c) If area method used deduct $\frac{1}{2}$ mark. for **Arith** slip.


22. (a) (i)
$$F = 4 \times 170$$

= $680 \text{ kN} \left(\frac{1}{2}\right) \left(\frac{1}{2}\right)$

(ii)
$$F = ma$$
 ($\frac{1}{2}$)
= 185 000 × 3 · 2 ($\frac{1}{2}$)
= 592 000 (N) ($\frac{1}{2}$)

Friction Force = $680\,000 - 592\,000$ ($\frac{1}{2}$) = $88\,000\,N$ ($\frac{1}{2}$) ($\frac{1}{2}$)

4

(B) Total internal (1) reflection (1)

(ii)
$$t = \frac{d}{v}$$

 $\binom{1}{2}$

$$=\frac{62}{2\times10^8}$$

 2×10^{9} = 3 1×10⁻⁷ s (½) (½)

4

(8)

- (a) (ii) $592\,000\,\text{N}$ for final answer with no working = $1\frac{1}{2}$ marks $592\,000$ for final answer with no working = 1 mark.
- (b) (i) (A) Accept candidate's version of copied diagram of fibre unless outrageously different then apply mark scheme.

2

23. (a)
$$\omega = \text{mg}$$
 ($\frac{1}{2}$)
= 90×10 ($\frac{1}{2}$)
= 900 N ($\frac{1}{2}$) ($\frac{1}{2}$)

Accept 9.8 N/kg

(b) (i) Ep = mgh (
$$\frac{1}{2}$$
)
= 3000 × 90 × 10 × 400 ($\frac{1}{2}$)
= 1.08 × 10⁹ J ($\frac{1}{2}$) ($\frac{1}{2}$)

(ii)
$$P_{\text{out}} = \frac{E}{t}$$
 (½)

$$= \frac{1.08 \times 10^9}{3600}$$
 (½)

$$= 3 \times 10^5 \text{ (W)}$$
 (½)

% efficiency =
$$\frac{P_{\text{out}}}{P_{\text{in}}} \times 100$$
 (1)

$$67 \cdot 5 = \frac{3 \times 10^{5}}{P_{\text{in}}} \times 100$$
 (1)

$$P_{\text{in}} = 4 \cdot 44 \times 10^{5} \text{ W}$$
 (1)

$$4 \times 10^{5} \text{ W}$$
 $4 \cdot 4 \times 10^{5} \text{ W}$ $4 \cdot 44 \times 10^{5} \text{ W}$ $4 \cdot 444 \times 10^{5} \text{ W}$ (7)
All acceptable

Notes

- (b) (i) Calculation for one skier only (Ep = 3.6×10^5 J) gives $1\frac{1}{2}$ out of 2.
- (b) (ii) Can be done using energy instead of power

% eff =
$$\frac{E_{out}}{E_{in}} \times 100$$
 could get formula $\frac{1}{2}$

If correct energy calculation stops at $E_{in} = 1.6 \times 10^9 J$ give $1\frac{1}{2}$ out of 3.

Final answer—deduct ½ if **not** watts.

24. (a)
$$I = \frac{Q}{t}$$

 $(I = \frac{c}{t} \text{ OK if rest is correct})$

$$=\frac{300}{0\cdot12}$$

2

$$= 2500 \text{ A}$$
 (1) (1)

(b) Total Resistance =
$$50 \times 0.08$$
 ($\frac{1}{2}$)
= $4(\Omega)$ ($\frac{1}{2}$)

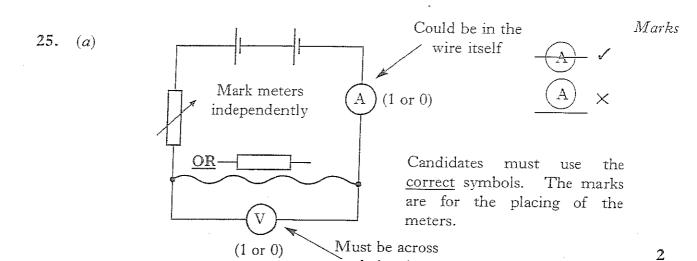
$$P = I^{2}R$$
 (1/2) OR $V = IR$ (1/2 both equations)
= $2500^{2} \times 4$ (1) = $2.5 \times 10^{7} W$ (1/2) = $10.000 V$

P = IV= 2500×10 000 (½)
= 2.5×10⁷ W (½)
3

(c) (i)
$$E = Pt$$
 ($\frac{1}{2}$)
= $2.5 \times 10^7 \times 0.12$ ($\frac{1}{2}$)
= 3×10^6 (J) ($\frac{1}{2}$)

$$\Delta t = \frac{E_{H}}{cm}$$

$$= \frac{3 \times 10^{6}}{385 \times 100}$$


$$= 77.9 ^{\circ}C$$
(1)
(2)

(ii) No loss of heat (energy)
$$(\frac{1}{2})$$
 to surroundings $(\frac{1}{2})$

-(9)

- (b) Carry (a) \rightarrow (b) R value \rightarrow (b) P value even if answer not 25 MW.
- (c) (i) If $25 \,\text{MW}$ not used then max of 2 out of 3. Using $\Delta T = \frac{E_H}{\text{cm}} = \frac{25 \times 10^6}{385 \times 100} = 649 \,^{\circ}\text{C}$ gets $\frac{1}{2}$ out of 3.
- (c) (ii) All electrical energy converted to heat (energy) (½) in rod (½)

 Temp rise not sufficient to reach m.pt. of copper (½)

(b) (i) Use variable resistor (to change current in circuit) (1)

Take voltmeter and ammeter readings (1/2) OR voltage + current readings

For each setting of the variable resistor (1/2)

whole wire

(ii) $R = \frac{V}{I}$ (1) $= \frac{4}{1}$ (1) $= 4 (\Omega)$ (1) $= 4 (\Omega)$ (1)
OR any other correct combination of V + I.

R of one metre =
$$\frac{4}{0 \cdot 2}$$

= 20Ω ($\frac{1}{2}$) ($\frac{1}{2}$)

(c)
$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$$
 (1) $R_T = \frac{1}{R_1} + \frac{1}{R_2} = \frac{1}{2} + \frac{1}{6} = 0.67\Omega$ 0 marks
$$\frac{1}{R} = \frac{1}{2} + \frac{1}{6}$$
 (1) $\frac{1}{2}$ $\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} = \frac{1}{2} + \frac{1}{6} = 0.67\Omega$ 1 mark
$$R = 1.5\Omega$$
 (1) $\frac{1}{2}$ (2) $\frac{1}{2}$ (2) $\frac{1}{2}$ $\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} = \frac{1}{2} + \frac{1}{6} = \frac{2}{3} + \frac{3}{2} = 1.5\Omega$ 1\frac{1}{2} marks 2

Notes

(b) (i) Last ½ mark is for some indication of more than one reading "Adjust variable resistor" ⇒ last ½ mark + first 1 mark Voltage "through" loses middle ½ mark "Adjust lab pack to get different current & voltage readings" 1 mark.

5

26. (a) (i) A helium
$$(\frac{1}{2})$$
 nucleus $(\frac{1}{2})$ or 2 Protons + 2 Neutrons (1)

- (ii) Removal of electrons $(\frac{1}{2})$ from atom $(\frac{1}{2})$ OR addition OR to leave ion
- (iii) α is much more ionising than β or γ (1) OR α is less penetrating than β or γ (1)
- (iv) C (1) Because other two have very short half-lives (1)
- (b) (i) A resistor NOT variable resistor (1)
 - (ii) V across resistor = 9 1.9= 7.1 (V)

$$R = \frac{V}{I} \qquad \frac{\binom{1}{2}}{20 \times 10^{-3}} = \frac{7 \cdot 1}{\binom{1}{2}} = 355 \Omega$$

. (9)

- (a) (ii) If charge of ion is specified it must be correct.
- (a) (iii) There must be a **comparison** between α and β , γ .
- (a) (iv) Any indication of longer time, greater length of use etc qualifies for second mark.Second mark only available following C for first mark.
- (b) (ii) Voltage must be 7·1 V
 Otherwise ½ formula mark only.
 (Only exception is a clear arith. slip trying to get 7·1 V)

- 27. (a) (i) (n-channel enhancement) MOSFET
- (1)

(ii) Voltage divider **or** potential divider

(1)

2

- (b) (i) 2.0 V
- Range 2.0 2.1 V

(1) $\binom{1}{2}$ unit deduction

- (ii) $V_1 = \left(\frac{R_1}{R_1 + R_2}\right) \times Vs$ $\left(\frac{R_2}{R_1}\right)$
 - $2 = \left(\frac{R_1}{R_1 + 20}\right) \times 9 \qquad (\frac{1}{2})$
 - $R_1 = 5.71 \text{ k}\Omega$
- $\left(\frac{1}{2}\right)$ $\left(\frac{1}{2}\right)$

3

OR increases

- (c) In darkness the resistance of LDR = $10k\Omega$
 - Voltage across LDR is greater than 2 V
 - MOSFET will conduct
 - OR be switched on

- (1) Independent
- (1) marks
- (1) Harks

3

(8)

Notes

- (a) (i) Not transistor

 Be sympathetic to MOSPHET

 Be sympathetic to (slight) variations on n-channel enhancement.
- (b) (ii) Version $\frac{V_1}{V_2} = \frac{R_1}{R_2}$ (1)

$$\frac{2}{7} = \frac{R_1}{20} \qquad (\frac{1}{2})$$

$$R_1 = 5 \cdot 71 \,k\Omega \, \left(\frac{1}{2}\right) \left(\frac{1}{2}\right)$$

(b) (i) + (c) Must match

28. (a) $3 \times 10^8 \text{ m/s}$

(1) $(\frac{1}{2})$ unit deduction

 $(b) \ \lambda = \frac{v}{f}$

 $\left(\frac{1}{2}\right)$

$$= \frac{3 \times 10^8}{4 \cdot 6 \times 10^{14}} \tag{1}$$

 $= 6.52 \times 10^{-7} \text{ (m)} \quad (1)$

For those with wrong speed

Light is red

(1)

Note: Red on its own = zero

3 (4)

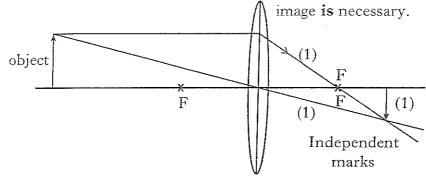
- (b) There **must** be a complete calculation with answer before candidate can choose a colour.
- (b) Allow frequency calculation from each wavelength to find 4.6×10^{14} Hz.

29. (a)
$$P = \frac{1}{f}$$

 $\binom{I}{2}$

Non use of metres for f loses $\frac{1}{2}$ mark.

$$=\frac{1}{0\cdot03}$$


= 33 D

 $\begin{pmatrix} \frac{1}{2} \end{pmatrix}$ $\begin{pmatrix} \frac{1}{2} \end{pmatrix}$ $\begin{pmatrix} \frac{1}{2} \end{pmatrix}$

2

Arrows on rays not necessary. One downwards arrow on

(ii) Any two from Image is smaller (1)

Image is inverted (1)

Laterally inverted (or reversed)

5

(c) 30 mm (1) OR one focal length

Because light will be focused at focal point (1)

or focused at one focal length

or focused at principal focus

Note: The two marks are independent.

2

(9)

- (b) (i) Object must be U > 2f but diagram needn't be exactly to scale (If U < 2f then deduct 1 mark)
- $(b)(i) \rightarrow (b)(ii)$ must be consistent with candidates image but if no image shown then start remarking at (b)(ii)

30. (a) Nucleus fissions (1) **OR** nucleus splits (**not** atom) Release of neutrons $(\frac{1}{2})$ and energy $(\frac{1}{2})$

2

(b) Control rods absorb fewer neutrons More fissions take place

(1) Independent marks

Increase in temperature of coolant OR hotter

Note: "There are more neutrons" will get half mark in place of first full mark.

3

$$D = \frac{E}{m}$$
 (1)

$$= \frac{8 \cdot 4 \times 10^{-3}}{70} \tag{1}$$

$$= 1.2 \times 10^{-4} \text{ (Gy)} \quad (\frac{1}{2})$$

$$Q = \frac{H}{D}$$
 (1)

$$= \frac{336 \times 10^{-6}}{1 \cdot 2 \times 10^{-4}}$$
 (1)

$$= 2.8$$
 (1/2)

Note: Deduct half mark if unit given

3

(8)

[END OF MARKING INSTRUCTIONS]

Notes

(c) Very common:-

$$Q = \frac{H}{D} = \frac{336 \times 10^{-6}}{8 \cdot 4 \times 10^{-3}} = 0.04$$

gets formula $\frac{1}{2}$ mark only.