Using Excel in AH Physics Investigations

The aim of this activity is to ensure you can set up a spreadsheet for data entry and automate calculations (such as uncertainties) using formulae. There is an introduction to the LINEST function, which provides information (gradient, y-axis intercept and their associated uncertainties) on lines of best fit.

Data for this activity was obtained by finding the period of oscillation for a simple pendulum over a range of pendulum lengths.

1. Enter the data.

There are 5 period measurements for each length. Create columns for length and 5 period measurements in your spreadsheet, then copy & paste the following values into your columns:

pendulum					
length	period of oscillation T (s)				
l (m)	period 1	period 2	period 3	period 4	period 5
0.2	0.88	0.83	0.91	0.91	0.87
0.3	1.09	1.07	1.13	1.11	1.05
0.4	1.28	1.19	1.25	1.39	1.31
0.5	1.42	1.56	1.36	1.30	1.48
0.6	1.57	1.45	1.62	1.52	1.67
0.7	1.71	1.82	1.77	1.62	1.65
0.8	1.80	1.88	1.83	1.74	1.77
0.9	1.90	2.00	1.83	1.89	1.89
1.0	2.01	2.05	2.00	2.01	1.99
1.1	2.10	2.04	2.08	2.11	2.15
1.2	2.14	2.10	2.22	2.20	2.05
1.3	2.32	2.21	2.38	2.33	2.36

2. Add additional columns.

At the appropriate position in the table, create columns for;

- mean period
- o random uncertainty in period
- o scale reading uncertainty in period
- absolute uncertainty in period
- o %age uncertainty in period
- \circ T²
- o %age uncertainty in T²
- o absolute uncertainty in T² *
- absolute uncertainty in length *

3. Enter calculations.

Use the **Excel formula builder** to produce calculations for each empty cell in the 1st row of data. Excel's **AVERAGE**, **MAX**, **MIN** & **COUNT** functions are useful here. Any other calculation probably requires creation of an expression from scratch. Be careful with brackets!

When building expressions, the following functions may be required;

multiplication * division / raise to power ^

If you need to use π in a calculation, use **PI()** in the relationship.

PI() will require control of significant figures - how could you achieve this in Excel?

4. Plot the chart.

Once you are happy with the values obtained, plot a chart to show the results.

Highlight the x-axis data (pendulum length) and y-axis data (T^2) . Include column headings if you want Excel to use these as data labels.

Once columns are highlighted, choose Chart > Scatter to produce the graph.

^{*}absolute values are required to produce independent error bars for each point on your graph.

5. Add error bars.

Click on any data marker inside your chart. From the options, pick **error bars**. Choose the custom option and enter the range of cells containing your **absolute** uncertainty values. (note that % uncertainties do not work with the custom option). The same range should be entered for the positive and negative fields to account for \pm in the uncertainty. Repeat this process for the other axis

6. Calculate line of best fit data (gradient, intercept).Highlight a grid of empty cells – 2 columns x 5 rows. Keeping the cells highlighted, choose the LINEST function from the formula bar. LINEST has 4 arguments in the brackets, i.e. LINEST(1,2,3,4).

- 1 = range of y-axis values (without column heading)
- 2 = range of x-axis values (without column heading)
- 3 = TRUE
- 4 = TRUE

In practice, your formula will look something like

"=LINEST(N5:N10,C5:C10,TRUE,TRUE)"

where "TRUE" is just a switch to provide statistical analysis of the specified data ranges.

When you have entered the formula, make sure you press SHIFT + CONTROL + ENTER together to fill the highlighted cells with data.

The result should look something like this, with the important information shown in the top 2 rows.

You can access tutorials on LINEST on my site via the following link http://mrmackenzie.co.uk/2011/09/27/ah-help-using-excel/ or by typing "linest" in the search box.

