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KINEMATIC RELATIONSHIPS AND RELATIVISTIC MOTION
Throughout this course calculus techniques will be used.  These techniques are very
powerful and a knowledge of integration and differentiation will allow a deeper
understanding of the nature of physical phenomena.

Kinematics is the study of the motion of points, making no reference to what causes
the motion.

The displacement  s  of a particle is the length and direction from the origin to the
particle.

The displacement of the particle is a function of time: s  =  f(t)

Consider a particle moving along OX.

s

O P Q

Δ s

X

Δ s is covered in time     t Δ

At time t + Δt particle passes Q.

Velocity

average velocity vav  =  
Δs
Δt  

However the instantaneous velocity is different, this is defined as :

v  =  lim  
Δs
Δt   (as Δt -> 0)     v  =  

ds
dt 

Acceleration
velocity changes by  Δv in time  Δt

aav   =  
Δv
Δt  

Instantaneous acceleration : a  =  lim  
Δv
Δt  (as Δt -> 0)    a  =  

dv
dt  

  if a  =  
dv
dt     then   

dv
dt     =   

d
dt  

.ds
dt

    =   
d2s
dt2 

   a   =  
dv
dt    =   

d2s
dt2

      

Note: a change in velocity may result from a change in direction  (e.g. uniform
motion in a circle - see later).
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Mathematical Derivation of Equations of Motion for Uniform Acceleration

   a  =   
d2s
dt2  

Integrate with respect to time:

⌡
#
⌠

 

 

 d
2s

dt2 dt    =  ⌡⌠
 

 
 a dt  

        ds
dt    =   a t   +   k

 when t  =  0   ds
dt   =  u    hence    k  =  u

 t  =  t    ds
dt   =  v

 v  =  u   +   at  ..... 1  

integrate again :  remember that    v  =  
ds
dt    =  u + at

 ⌡⌠
 
 ds    =   ⌡⌠

 
 u dt   +   ⌡⌠

 
 a t dt 

       s   =  u t   +   1
2 a t2   +    k

apply initial conditions: when  t   =   0,  s   =   0   hence   k  =  0

s   =  ut   +   12 at2  ..... 2        

Equations 1 and 2 can now be combined as follows:   square both sides of equation 1

v2   =   u2   +   2 u a t   +   a2 t2

v2   =   u2   +   2 a [ u t   +   
1
2  a t2]

       (using equation 2)    v2  =  u2   +   2as  ..... 3  

A useful fourth equation  is

  s   =   (u + v)
2    t ..... 4

Variable Acceleration
If acceleration depends on time in a simple way, calculus can be used to solve the
motion.
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Graphs of Motion
The slope or gradient of these graphs provides useful information.  Also the area
under the graph can have a physical significance.

Displacement - time graphs

v  =  
ds
dt       slope  =  instantaneous velocity.

Area under graph  -  no meaning.

Velocity - time graphs

a  =  
dv
dt        slope  =  instantaneous acceleration.

Also    s  =    v dt 
 

∫ Area under v-t graph gives the displacement.

Calculations Involving Uniform Accelerations
Examples of uniform acceleration are:

•  vertical motion of a projectile near the Earth’s surface,
     where the acceleration  is  g  =   9.8 m s-2  vertically downwards

•  rectilinear (i.e. straight line) motion e.g. vehicle accelerating along a road.
These have been covered previously; however a fuller mathematical treatment for
projectiles is appropriate at this level.

Consider the simple case of an object projected with an initial velocity u at right
angles to the Earth’s gravitational field - (locally the field lines may be considered
parallel).

object

x

u
field
lines

y path

   a  =  g,  time to travel distance x across field  =  t

t  =  
x
u 

apply y  =  uyt  +  12  a t2, uyt  =  0   and   a  =  g

y  =  12  . g . 
x2

u2 

y  = [ 
1
2  . 

g
u2  ] . x2

Now g and u are constants,    y  α  x2  and we have the equation of a parabola.

The above proof and equations are not required for examination purposes.
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ANGULAR MOTION
The angular velocity of a rotating body  is defined as the rate of change of angular
displacement.

          ω  =  
dθ
dt     

where ω  (rad s-1) is the angular velocity
θ  (rad) is the angular displacement

The radian (rad) is a unit of angle: 180° = π  rad

Angular acceleration,  α  =  
dω
dt    =  

d2θ
dt2  unit of α:  rad s-2

We assume for this course that α  is constant.

The derivation of the equations for angular motion are very similar to those for linear
motion seen earlier.  The derivations of these equations are not required for
examination purposes.

Angular Motion Relationships

 ω  =  ωο   +   αt  ..... 1  

 θ  =  ωοt   +   12 αt2  ..... 2  

 ω2 =  ωo2   +   2αθ  ..... 3  

You will note that these angular equations have exactly the same form as the linear
equations.
Remember that these equations only apply for uniform angular accelerations.

Uniform Motion in a Circle
Consider a particle moving with uniform speed in a
circular path as shown opposite.

ω  =  
dθ
dt  

The rotational speed v is constant,  ω  is also constant.
T  is the period of the motion and is the time taken to
cover 2π radians.

ω  =  
2π
Τ

 but v  =  
2πr
T   

 v  =  rω  

r
sθ

v

(Note: s is the arc swept
out by the particle
and  s = rθ)
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Radial and angular acceleration

The angular acceleration  α =  
dω
dt    and the radial acceleration   a  =  

dv
dt  .

Therefore since v = rω,  then at any instant  
dv
dt   =  r 

dω
dt     giving

a  =  r α

Radial Acceleration

θ

θ

Α

Β

Q

u

r

O
2θ

Δv

-u v θ

Δv

-u v

2
v

2
Δ

θ

sin θ  v
2
Δ

v
=

 The particle travels from A to B in time Δt and with speed  v, thus  | u |  =  | v |  and
Δv = v + (- u)  which is  Δv = v - u

Δt = arc AB
v    =  r (2θ)

v  

average acceleration,  aav = Δv
Δt    =  2v sinθ

Δt  

  =   2v sin
r 2 / v     θ
θ =  v

2

r   . sinθ
θ

 

As θ -> 0,  aav ->  instantaneous acceleration at point Q:

 a =  
v2

r   .  [  lim
θ->0  

 sinθ
 θ   ]   but [  lim

θ->0  
 sinθ

 θ   ] =  1  

 when θ is small and is measured in radians sinθ = θ.

 a  =   
v2

r   =   ω2 r    since  v = rω

The direction of this acceleration is always towards the centre of the circle.

Note: This is not a uniform acceleration.  Radial acceleration is fixed only in size.
Compare this with the angular acceleration which is constant for problems in this
course.

This motion is typical of many central force type motions e.g. Planetary Motion,
electrons ‘orbiting’ nuclei  and  electrons injected at right angles to a uniform
magnetic field which will be covered later in the course.

Thus any object performing circular orbits at uniform speed must have a centre-
seeking or central force responsible for the motion.
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Central Force
Does a rotating body really have an inward acceleration (and hence an inward force)?

Argument Most people have experienced the sensation of being in a car or a bus
which is turning a corner at high speed.  The feeling of being ‘thrown to the outside of
the curve’ is very strong, especially if you slide along the seat.  What happens here is
that the friction between yourself and the seat is insufficient to provide the central
force needed to deviate you from the straight line path you were following before the
turn.  In fact, instead of being thrown outwards, you are, in reality, continuing in a
straight line while the car moves inwards.  Eventually you are moved from the
straight line path by the inward (central) force provided by the door.

Magnitude of the Force

F  =  m a but   a  =  
v2

r       or a = ω2 r

Thus central force,    F  =  m v
2

r  or F = m r ω2      since  v = r ω

Examples
1. A Car on a Flat Track
If the car goes too fast, the car ‘breaks away’ at a tangent. The force of friction is not
enough to supply an adequate central force.

frictionΟ

ω

2. A Car on a Banked Track
For tracks of similar surface properties, a car will be able to go faster on a banked
track before going off at a tangent because there is a component of the normal
reaction as well as a component of friction, Fr, supplying the central force.
The central force is R sinθ  +  Fr cos θ  which reduces to R sinθ  when the friction is
zero.  The analysis on the right hand side is for the friction Fr equal to zero.

R is the ‘normal reaction’ force of the
track on the car.
In the vertical direction there is no
acceleration:
 R cosθ = mg    ........ 1
In the radial direction there is a central
acceleration:

R sinθ = 
mv2

r     ........ 2

Divide Eq. 2 by Eq. 1:

tan θ = 
v2
gr          (assumes friction is zero) 

 (This equation applies to all cases of
‘banking’ including aircraft turning in
horizontal circles)
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ROTATIONAL DYNAMICS
Moment of a force
The moment of a force is the turning effect it can produce.
Examples of moments are:

using a long handled screwdriver to ‘lever off’ the lid of a paint tin, see below 
using a claw hammer to remove a nail from a block of wood or levering off a 
cap from a bottle.  

F

paint

lid

d

screwdriver

The magnitude of the moment of the force (or the turning effect) is  F x d.  

Where F is the force and d is the perpendicular distance from the direction of the force
to the turning point.

Torque
For cases where a force is applied and this causes rotation about an axis, the moment
of the force can be termed the torque.

F

O r

Consider a force F applied tangentially to the rim of a
disc which can rotate about an axis O through its
centre.  The radius of the circle is r.
The torque T associated with this force F is defined to
be the force multiplied by the radius r.

 T  =  F x r    unit of T:  newton metre (N m) 

Torque is a vector quantity.  The direction of the torque vector is at right angles to the
plane containing both r and F and lies along the axis of rotation.  (For interest only, in
the example shown in the diagram torque, T, points out of the page).
A force acting on the rim of an object will cause the object to rotate; e.g. applying a
push or a pull force to a door to open and close , providing it creates a non-zero
resulting torque.  The distance from the axis of rotation is an important measurement
when calculating torque.  It is instructive to measure the relative forces required to
open a door by pulling with a spring balance firstly at the handle and then pulling in
the middle of the door.  Another example would be a torque wrench which is used to
rotate the wheel nuts on a car to a certain ‘tightness’ as specified by the manufacturer.
An unbalanced torque will produce an angular acceleration.  In the above diagram
if there are no other forces then the force F will cause the object to rotate.
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Inertia
In linear dynamics an unbalanced force produces a linear acceleration.  The
magnitude of the linear acceleration produced by a given unbalanced force will
depend on the mass of the object, that is on its inertia.  The word inertia can be
loosely described as ‘resistance to change in motion of an object’  Objects with a
large mass are difficult to start moving and once moving are difficult to stop.

Moment of Inertia
The moment of inertia I of an object can be described as its resistance to change in its
angular motion.  The moment of inertia I for rotational motion is analogous to the
mass m for linear motion

The moment of inertia I of an object depends on the mass and the distribution of the
mass about the axis of rotation.

For a mass m at a distance r from the axis of rotation the moment of inertia of this
mass is given by the mass m multiplied by r2.

 I  =  m r2  unit of I:  kg m2

For example, a very light rod has two 0.8 kg masses each at a distance of 50 cm from
the axis of rotation.

50 cm50 cm

axis of rotation

The moment of inertia of each mass is m r2 = 0.8 x 0.52 = 0.2 kg m2 giving a total
moment of inertia I = 0.4 kg m2.  Notice that we assume that all the mass is at the
50 cm distance.  The small moment of inertia of the light rod has been ignored.

Another example is a hoop, with very light spokes connecting the hoop to an axis of
rotation through the centre of the hoop and perpendicular to the plane of the hoop, e.g.
a bicycle wheel.  Almost all the mass of the hoop is at a distance R, where R is the
radius of the hoop.  Hence I = M R2  where M is the total mass of the hoop.

For objects where all the mass can be considered to be at the same distance from the
axis of rotation this equation I = m r2 can be used directly.

However most objects do not have all their mass at a single distance from the axis of
rotation and we must consider the distribution of the mass.
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Moment of inertia and mass distribution

Particle of
mass mrO

Consider a small particle of the
disc as shown. This particle of
mass m is at a distance r from
the axis of rotation 0.

The contribution of this mass to the moment of inertia of the whole object (in this case
a disc) is given by the mass m multiplied by r2.  To obtain the moment of inertia of the
disc we need to consider all the particles of the disc, each at their different distances.

Any object can be considered to be made of n particles each of mass m.  Each particle
is at a particular radius r from the axis of rotation.  The moment of inertia of the
object is determined by the summation of all these n particles e.g. ∑ (m r2).  Calculus
methods are used to determine the moments of inertia of extended objects.  In this
course, moments of inertia of extended objects, about specific axes, will be given.

It can be shown that the moment of inertia of a uniform rod of length L and total mass

M through its centre is  
ML2

12   , but the moment of inertia of the same rod through its

end is  
ML2

3   ,  i.e. four times bigger.  This is because it is harder to make the rod

rotate about an axis at the end than an axis through its middle because there are now
more particles at a greater distance from the axis of rotation.

Torque and Moment of Inertia
An unbalanced torque will produce an angular acceleration.  As discussed above,
the moment of inertia of an object is the opposition to a change in its angular motion.
Thus the angular acceleration α produced by a given torque T will depend on the
moment of inertia I of that object.

T  =  I α  

Angular Momentum
The angular momentum L of a particle about an axis is defined as the moment of
momentum.

O ω

r
m

v A particle of mass m rotates at ω rad s-1 about the
point O.
The linear momentum p = m v.
The moment of p = m v r  (r is perpendicular to v).

Thus the angular momentum of this particle  = m v r = m r2 ω, since v = r ω.
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For a rigid object about a fixed axis the angular momentum L will be the summation
of all the individual angular momenta.  Thus the angular momentum L of an object is
given by  ∑ (m r2 ω).  This can be written as ω ∑ (m r2) since all the individual parts
of the object will have the same angular velocity ω.  Also we have I = ∑ (m r2).

Thus the angular momentum of a rigid body is:

 L  =  I ω  unit of L:  kg m2 s-1.

Notice that the angular momentum of a rigid object about a fixed axis depends on the
moment of inertia.

Angular momentum is a vector quantity.  The direction of this vector is at right
angles to the plane containing v (since p = m v and mass is scalar) and r and lies along
the axis of rotation.  For interest only, in the above example L is out of the page.
(Consideration of the vector nature of T and L will not be required for assessment
purposes.)

Conservation of angular momentum
The total angular momentum before an impact will equal the total angular
momentum after impact providing no external torques are acting.

You will meet a variety of problems which involve use of the conservation of angular
momentum during collisions for their solution.

Rotational Kinetic Energy
The rotational kinetic energy of a rigid object also depends on the moment of inertia.
For an object of moment of inertia I rotating uniformly at ω rad s-1 the rotational
kinetic energy is given by:

Ek =  12 I ω2  

Energy and work done
If a torque T is applied through an angular displacement θ, then the work done  = T θ.

Doing work produces a transfer of energy, T θ  =  I ω2  -   I ω0
2  (work done = ΔEk).
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Summary and Comparison of Linear and Angular Equations

Quantity Linear Motion Angular Motion

acceleration a        ( a  =  r α) α
velocity v  =  u  +  a t  (v  = r ω) ω  =  ωo  +  α t
displacement s  =  u t  +  12  a t2 θ  =  ωot  + 12  α t2

momentum p  =  m v L  =  I ω
kinetic energy     12  m v2   12  I ω2

Newton’s 2nd law F  =  mdv
dt   =  m a T  =  I dωdt    =  I α

Laws
Conservation of mAuA + mBuB = mAvA + mBvB IAωοΑ + IBωοB = IAωA + IBωB
momentum
Conservation of F . s  =  12  m v2  -  12  m u2 Tθ  =  12  I ω2  -  12  I ωo2

energy

Some Moments of Inertia (for reference)

Thin disc about an axis through its centre  I  =  12  M R2 R = radius of disc

and perpendicular to the disc.

Thin rod about its centre I  =  1
12  ML2 L = length of rod

Thin hoop about its centre I  =  M R2 R = radius of hoop

Sphere about its centre I  =  25  M R2 R = radius of sphere

Where M is the total mass of the object in each case.
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Objects Rolling down an Inclined Plane
When an object such as a sphere or cylinder is allowed to run down a slope, the Ep at
the top, ( m g h), will be converted to both linear  (1

2  m v2) and angular (1
2  I ω2)

kinetic energy.

h

θ

length of slope = L
      h = L sin θ

v
ω

An equation for the energy of the motion (assume no slipping) is given below.
m g h  =  12  I ω2  +  12  m v2

The above formula can be used in an experimental determination of the moment of
inertia of a circular object.

Example
A solid cylinder is allowed to roll from rest down a shallow slope of length 2.0 m.
When the height of the slope is 0.02 m, the time taken to roll down the slope is 7.8 s.
The mass of the cylinder is 10 kg and its radius is 0.10 m.

Using this information about the motion of the cylinder and the equation above,
calculate the moment of inertia of the cylinder.

Solution
EP  =  m g h  =  10 x 9.8 x 0.02  =  1.96 J

Change in gravitational Ep  =  change in linear Ek  +  change in rotational Ek
      m g h  =  ( 12  m v2 - 0)  +  (1

2  I ω2 - 0)  

s  =  (u + v)
2    t

2.0  =  (0 + v)
2   x 7.8

v  =  4.0
7.8   =  0.513 m s-1

ω  =  vr   =  0.513
0.10    =  5.13 rad s-1

Ek(lin)  =  12  m v2  = 12  x 10 (0.513)2  =  1.32 J
  Ek(rot)  =    EP   -  Ek(lin)

1
2  I ω2  =  1.96  -  1.32  =  0.64 J

I  =  2 x 0.64
ω2    =  2 x 0.64

(5.13)2  

I  =  0.049 kg m2
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The Flywheel
Example
The flywheel shown below comprises a solid cylinder mounted through its centre and
free to rotate in the vertical plane.

ground

FT

W
2 m

Flywheel: mass   =  25 kg
radius  =  0.30 m.

Mass of hanging weight  =  2.5 kg

The hanging weight is released.  This results in an angular acceleration of the
flywheel. Assume that the effects of friction are negligible.
(a) Calculate the angular acceleration of the flywheel.
(b) Calculate the angular velocity of the flywheel just as the weight reaches ground

level.

Solution

 (a) We need to know I, the moment of inertia of the flywheel: I  =  12  M R2

I  =  12   x 25 x (0.30)2  =  1.125 kg m2

Consider the forces acting on the flywheel: W  -  FT  =  m a    where  m  =  2.5 kg
   24.5  -  FT  =  2.5 x 0.30 α     (a  =  r α)

FT   =  24.5  −  0.75 α  
Torque, T  =  FT x r  =  (24.5  -  0.75 α) x 0.30

and    T =  I α  =  1.125 α
Thus 1.125 α  =  7.35  −  0.225 α

α  =   7.35
1.35   =  5.44 rad s-2

(b) To calculate the angular velocity we will need to know  θ, the angular
displacement for a length of rope 2.0 m long being unwound.

circumference  =  2 π r  =  2 π x 0.30

no. of revs  =  length unwound
circumference    =  2.0 m

2π x 0.30 m   

θ  =  2 π x no. of revs  =  2 π x 2.0
2 π x 0.30   =  6.67 rad

ωo  =  0 apply ω2  =  ωo2  +  2αθ
ω  =  ? ω2  =  0  +  2 x 5.44 x 6.67
α  =  5.44 rad s-2 ω2  =  72.57
θ  =  6.67 rad     ω  =   8.52 rad s-1
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Frictional Torque
Example
The friction acting at the axle of a bicycle wheel can be investigated as follows.
The wheel, of mass 1.2 kg and radius 0.50 m, is mounted so that it is free to rotate in
the vertical plane.  A driving torque is applied and when the wheel is rotating at 5.0
revs per second the driving torque is removed.  The wheel then takes 2.0 minutes to
stop.
(a) Assuming that all the spokes of the wheel are very light and the radius of the

wheel is 0.50 m, calculate the moment of inertia of the wheel.
(b) Calculate the frictional torque which causes the wheel to come to rest.
(c) The effective radius of the axle is 1.5 cm.  Calculate the force of friction acting at

the axle.
(d) Calculate the kinetic energy lost by the wheel. Where has this energy gone?

Solution
(a) In this case I for wheel  =  MR2

    I  =  1.2 x (0.50)2  (M  =  1.2 kg,   R  =  0.50 m )
    I  =  0.30 kg m2

(b) To find frictional torque we need the angular acceleration (α), because  T  =  Ι α

ω  =  0, t  =  120 s α  =  
ω - ωo

t  

ωo  =  5.0 r.p.s.      =  0 - 31.4
120  

      = 31.4 rad s-1 α  =  - 0.262 rad s-2

Now use T   =  I α
    =  0.3 x (-0.262)
T  =  - 0.0786 N m

(c) Also T   =  r F (r  =  1.5 cm  =  0.015 m)

F  =  Tr    =  - 0.0786
0.015    =  - 5.24 N

i.e. negative value indicates force opposing  motion.

(d) Ek(rot)  =  12  I ωo2

=  12  x 0.30 x (31.4)2

=  148 J

When the wheel stops  Ek(rot)  =  0.  This 148 J will have changed to heat in the
axle due to the work done by the force of friction.
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Conservation of Angular Momentum
Example

A turntable, which is rotating on  frictionless bearings, rotates at an angular speed of
15 revolutions per minute.  A mass of 60 g is dropped from rest just above the disc at
a distance of 0.12 m from the axis of rotation through its centre.

60 g mass

15 rev/min

axis of rotation

0.12 m

As a result of this impact, it is observed that the rate of rotation of the disc is reduced
to 10 revolutions per minute.

(a) Use this information and the principle of conservation of angular momentum to
calculate the moment of inertia of the disc.

(b) Show by calculation whether this is an elastic or inelastic collision.

Solution
(a) Moment of inertia of disc =  I

Moment of inertia of 60 g mass  =  m r2 (treat as ‘particle’ at radius r)
=  0.06 x (0.12)2

Imass =  8.64 x 10-4 kg m2

initial angular velocity  =  ωo  =  15 rev min-1  =  15 x 2π
60  

         ωo  =  1.57 rad s-1

  final angular velocity    =  ω  =  10 rev min-1

             =  1.05 rad s-1

Total angular momentum before impact  =  total angular momentum after impact
            I ωo  =  (I + Imass) ω

I x 1.57  =  (I + 8.64 x 10-4) x 1.05
0.52 I  =  9.072 x 10-4

I  =  9.072 x 10-4

0.52    =  1.74 x 10-3 kg m2

(b) Ek before impact  =  12  I ωo2  =  12   x 1.74 x 10-3 x (1.57)2  =  2.14 x 10-3 J

Ek after impact  =  12 (I + Imass)  ω2  =  12  x 2.60 x 10-3 x (1.05)2  =  1.43 x 10-3 J

Ek difference  =  7.1 x 10-4 J
Thus the collision is inelastic.  The energy difference will be changed to heat.
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GRAVITATION
Historical Introduction
The development of what we know about the Earth, Solar System and Universe is a
fascinating study in its own right.  From earliest times Man has wondered at and
speculated over the ‘Nature of the Heavens’.  It is hardly surprising that most people
(until around 1500 A.D.) thought that the Sun revolved around the Earth because that
is what it seems to do!  Similarly most people were sure that the Earth was flat until
there was definite proof from sailors who had ventured round the world and not fallen
off!

It may prove useful therefore to give a brief historical introduction so that we may set
this topic in perspective.  For the interested student, you are referred to a most
readable account of Gravitation which appears in “Physics for the Inquiring Mind” by
Eric M Rogers  - chapters 12 to 23 (pages 207 to 340) published by Princeton
University Press (1960).  These pages include astronomy, evidence for a round Earth,
evidence for a spinning earth, explanations for many gravitational effects like tides,
non-spherical shape of the Earth/precession, variation of ‘g’ over the Earth’s surface.
There is also a lot of information on the major contributors over the centuries to our
knowledge of gravitation.  A brief historical note on these people follows.

Claudius Ptolemy (A.D. 120) assumed the Earth was immovable and tried to explain
the strange motion of various stars and planets on that basis.  In an enormous book,
the “Almagest”, he attempted to explain in complex terms the motion of the ‘five
wandering stars’ - the planets.

Nicolaus Copernicus (1510) insisted that the Sun and not the Earth was the centre of
the solar system.  First to really challenge Ptolemy.  He was the first to suggest that
the Earth was just another planet.  His great work published in 1543, “On the
Revolutions of the Heavenly Spheres”, had far reaching effects on others working in
gravitation.

Tycho Brahe (1580) made very precise and accurate observations of astronomical
motions.  He did not accept Copernicus’ ideas.  His excellent data were interpreted by
his student Kepler.

Johannes Kepler (1610) Using Tycho Brahe’s data he derived three general rules (or
laws) for the motion of the planets.  He could not explain the rules.

Galileo Galilei (1610) was a great experimenter.  He invented the telescope and with
it made observations which agreed with Copernicus’ ideas.  His work caused the first
big clash with religious doctrine regarding Earth-centred biblical teaching.  His work
“Dialogue” was banned and he was imprisoned.  (His experiments and scientific
method laid the foundations for the study of Mechanics).

Isaac Newton (1680) brought all this together under his theory of Universal
Gravitation explaining the moon’s motion, the laws of Kepler and the tides, etc.  In
his mathematical analysis he required calculus - so he invented it as a mathematical
tool!
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Consideration of Newton’s Hypothesis
It is useful to put yourself in Newton’s position and examine the hypothesis he put
forward for the variation of gravitational force with distance from the Earth.  For this
you will need the following data on the Earth/moon system (all available to Newton).

Data on the Earth
“g” at the Earth’s surface =  9.8 m s-2

radius of the Earth,  RE =  6.4  x  106 m
radius of moon’s orbit, rM =  3.84  x  108 m
period, T, of moon’s circular  orbit =  27.3 days  =  2.36  x  106 s.

take   
RE
rM

    =   [ 1
60 ]

Assumptions made by Newton
• All the mass of the Earth may be considered to be concentrated at the centre of the

Earth.  

• The gravitational attraction of the Earth is what is responsible for the moon’s
circular motion round the Earth.  Thus the observed central acceleration can be

calculated from measurements of the moon’s motion:  a = v
2

r   .

Hypothesis
Newton asserted that the acceleration due to gravity “g” would quarter if the distance
from the centre of the Earth doubles i.e. an inverse square law.

“g”  α  1
r2 

• Calculate the central acceleration for the Moon: use a  =  v
2

R    or  a  =  4π
2R

T2    m s-2.

• Compare with the “diluted” gravity at the radius of the Moon’s orbit according to

the hypothesis, viz. 1
(60)2   x 9.8 m s-2.

Conclusion
The inverse square law applies to gravitation.

General Data
Planet
or
satellite

Mass/
kg

Density/
kg m-3

Radius/
m

Grav.
accel./
m s-2

Escape
velocity/
m s-1

Mean dist
from Sun/
m

Mean dist
from Earth/
m

Sun 1.99x 1030 1.41 x 103  7.0 x 108 274  6.2 x 105       -- 1.5 x 1011

Earth  6.0 x 1024   5.5 x 103  6.4 x 106     9.8 11.3 x 103 1.5 x 1011       --
Moon  7.3 x 1022   3.3 x 103  1.7 x 106     1.6   2.4 x 103       -- 3.84 x 108

Mars  6.4 x 1023   3.9 x 103  3.4 x 106     3.7   5.0 x 103 2.3 x 1011       --
Venus  4.9 x 1024   5.3 x 103 6.05 x 106     8.9 10.4 x 103 1.1 x 1011       --
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Inverse Square Law of Gravitation
Newton deduced that this can only be explained if there existed a universal
gravitational constant, given the symbol G.

We have already seen that Newton’s “hunch” of an inverse square law was correct.  It
also seems reasonable to assume that the force of gravitation will vary with the
masses involved.

F  α  m,   F  α  M,   F  α  1
r2            giving   F  α  Mm

r2     

 F  =  GMm
r2  where G  =  6.67 x 10-11 N m2 kg-2

Consider the Solar System
M  -->  Ms and m  -->  mp

Force of attraction on a planet is:    F  =  
GMsmp

r2
     (r  =  distance from Sun to planet)  

Now consider the central force if we take the motion of the planet to be circular.

Central force  F  =   
GMsmp

r2  

Also F  =  
mpv2

r       force of gravity supplies the central force.

Thus
GMsmp

r2    =  
mpv2

r  and v  =  2πr
T  

GMsmp
r2     =  

mp
r   . 4π

2r2

T2  

rearranging r3

T2   =  
GMs
4π2  

Kepler had already shown that  r3
T2    =  a constant, and Ms is a constant, hence it

follows that  G  must be a constant for all the planets in the solar system (i.e. a
universal constant).

Notes: • We have assumed circular orbits.  In reality, orbits are elliptical.
• Remember that Newton’s Third Law always applies.  The force of gravity

is an action-reaction pair.  Thus if your weight is 600 N on the Earth; as
well as the Earth pulling you down with a force of 600 N, you also pull the
Earth up with a force of 600 N.

• Gravitational forces are very weak compared to the electromagnetic force
(around 1039 times smaller).  Electromagnetic forces only come into play
when objects are charged or when charges move.  These conditions only
tend to occur on a relatively small scale.  Large objects like the Earth are
taken to be electrically neutral.
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“Weighing” the Earth
Obtaining a value for “G” allows us to “weigh” the Earth i.e. we can find its mass.
Consider the Earth, mass Me, and an object of mass m on its surface.  The
gravitational force of attraction can be given by two equations:

F  =  mg and F  =  
GmMe 

Re2    

where Re is the separation of the two masses, i.e. the radius of the earth.

Thus m g  =   
GmMe 

Re2  Me  =  
gRe2

G    =  9.8 x (6.40 x 106)2
6.67 x 10-11    

Thus the mass of the Earth    =  6.02 x 1024 kg 

The Gravitational Field
In earlier work on gravity we restricted the study of gravity to small height variations
near the earth’s surface where the force of gravity could be considered constant.

Thus Fgrav  =  m g
Also  Ep  =  m g h where  g  =  constant  ( 9.8 N kg-1)

When considering the Earth-Moon System or the Solar System we cannot restrict our
discussions to small distance variations.  When we consider force and energy changes
on a large scale we have to take into account the variation of force with distance.

Definition of Gravitational Field at a point.  

This is defined to be the force per unit mass at the point. i.e.    g  =  Fm 

The concept of a field was not used in Newton’s time.  Fields were introduced by
Faraday in his work on electromagnetism and only later applied to gravity.

Note that g and F above are both vectors and whenever forces or fields are added this
must be done vectorially.

Field Patterns (and Equipotential Lines)
(i)  An Isolated ‘Point’ Mass   (ii)   Two Equal ‘Point’ Masses

      

field line

equipotential line
    (equipotential lines shown broken)

Note that equipotential lines are always at right angles to field lines.
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Variation of g with Height above the Earth (and inside the Earth)
An object of mass m is on the surface of the Earth (mass M).  We now know that the
weight of the mass can be expressed using Universal Gravitation.

Thus mg  =  GMm
r2  (r = radius of Earth in this case)

g  =  GM
r2  (note that   g α 

1
r2    above the Earth’s surface)

However the density of the Earth is not uniform and this causes an unusual variation
of g with radii inside the Earth.

Gravitational Potential
We define the gravitational potential (Vp) at a point in a gravitational field to be the
work done by external forces in moving unit mass  m  from infinity to that point.

Vp  =  work done
mass  

We define the theoretical zero of gravitational potential for an isolated point mass to
be at infinity.  (Sometimes it is convenient to treat the surface of the Earth as the
practical zero of potential. This is valid when we are dealing with differences in
potential.)

Gravitational Potential at a distance r  from mass  m
This is given by the equation below.

gravitational potential VP  =  - GM
r    unit of VP:  J kg-1

The Gravitational Potential ‘Well’ of the Earth

02468 2 4 6 8
distance from Earth/
in Earth radii

-20

-40

-60

Vp/ MJ kg-1

This graph gives an indication of how masses are ‘trapped’ in the Earth’s field.
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Conservative field
The force of gravity is known as a conservative force because the work done by the
force on a particle that moves through any round trip is zero i.e. energy is conserved.
For example if a ball is thrown vertically upwards, it will, if we assume air resistance
to be negligible, return to the thrower’s hand with the same kinetic energy that it had
when it left the hand.

An unusual consequence of this situation can be illustrated by considering the
following path taken in moving mass m on a round trip from point A in the Earth’s
gravitational field.  If we assume that the only force acting is the force of gravity and
that this acts vertically downward, work is done only when the mass is moving
vertically, i.e. only vertical components of the displacement need be considered.
Thus for the path shown below the work done is zero.

A m

The overall energy 
required for this 
round trip is zero.

By this argument a non conservative force is one which causes the energy of the
system to change e.g. friction causes a decrease in the kinetic energy.  Air resistance
or surface friction can become significant and friction is therefore labelled as a non
conservative force.

Escape Velocity
The escape velocity for a mass m escaping to infinity from a point in a gravitational
field is the minimum velocity the mass must have which would allow it to escape the
gravitational field.

At the surface of a planet the gravitational potential is given by: V  =  - 
GM

r  .

The potential energy of mass  m  is given by  V x m  (from the definition of
gravitational potential).

Ep  =  - GMm
r  

The potential energy of the mass at infinity is zero.  Therefore to escape completely

from the sphere the mass must be given energy equivalent in size to  
GMm

r   .

To escape completely, the mass must just reach infinity with its Ek = 0
(Note that the condition for this is that at all points;   Ek + Ep = 0).

at the surface of the planet        12  m ve2  -  GMm
r    =  0           m  cancels

 ve2   =   2GM
r  

  ve    =  2GM
r     or greater
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Atmospheric Consequences:
vr.m.s. of H2 molecules  =  1.9 km s-1 (at 0°C)
vr.m.s. of O2 molecules  =  0.5 km s-1 (at 0°C)

When we consider the range of molecular speeds for hydrogen molecules it is not
surprising to find that the rate of loss to outer space is considerable.  In fact there is
very little hydrogen remaining in the atmosphere.  Oxygen molecules on the other
hand simply have too small a velocity to escape the pull of the Earth.
The Moon has no atmosphere because the escape velocity (2.4 km s-1) is so small that
any gaseous molecules will have enough energy to escape from the moon.

Black Holes and Photons in a Gravitational Field
A dense star with a sufficiently large mass/small radius could have an escape velocity
greater than 3 x 108 m s-1.  This means that light emitted from its surface could not
escape - hence the name black hole.

The physics of the black hole cannot be explained using Newton’s Theory.  The
correct theory was described by Einstein in his General Theory of Relativity (1915).
Another physicist called Schwarzschild calculated the radius of a spherical mass from

which light cannot escape.  It is given here for interest only    r  =  
2GM
 c2  .

Photons are affected by a gravitational field.  There is gravitational force of attraction
on the photon.   Thus photons passing a massive star are deflected by that star and
stellar objects ‘behind’ the star appear at a very slightly different position because of
the bending of the photon’s path.

Further Discussion on Black Holes - for interest only
If a small rocket is fired vertically upwards from the surface of a planet, the velocity
of the rocket decreases as the initial kinetic energy is changed to gravitational
potential energy.  Eventually the rocket comes to rest, retraces its path downwards
and reaches an observer near to the launch pad.

Now consider what happens when a photon is emitted from the surface of a star of
radius r and mass M. The energy of the photon, hf, decreases as it travels to positions
of greater gravitational potential energy but  the velocity of the photon remains the
same.  Observers at different heights will observe the frequency and hence the
wavelength of the photon changing, i.e. blue light emitted from the surface would be
observed as red light at a distance from a sufficiently massive, high density star.
(N.B. this is known as the gravitational redshift not the well known Doppler redshift
caused by the expanding universe).

If the mass and density of the body are greater than certain critical values, the
frequency of the photon will decrease to zero at a finite distance from the surface and
the photon will not be observed at greater distances.

It may be of interest to you to know that the Sun is not massive enough to become a
black hole.  The critical mass is around 3 times the mass of our Sun.
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Satellites in Circular Orbit
This is a very important application of gravitation.
The central force required to keep the satellite in orbit is provided by the force of
gravity.

Thus: mv2

r    =  GMm
r2  

 v  =  GM
r  but v  =  2πr

T    

T  =  2πr r
GM   =  2π 

r3

GM 

Thus a satellite orbiting the Earth at radius, r, has an orbit period, T  =   2π r3

GM 

Energy and Satellite Motion
Consider a satellite of mass  m  a distance  r  from the centre of the parent planet of
mass  M where M >> m.

Since GMm
r2    =  m v

2

r  

Re-arranging, we get 1
2  mv2  =  GMm

2r   ; thus Ek  =   GMm
2r    

Note that Ek is always positive.

But the gravitational potential energy of the system,  Ep  =  -  GMm
r  

Note that Ep is always negative.

Thus the total energy is Etot  =  Ek  +  Ep

        =  GMm
2r     + [- GMm

r   ]

 Etot =  - GMm
2r   

Care has to be taken when calculating the energy required to move satellites from one
orbit to another to remember to include both changes in gravitational potential energy
and changes in kinetic energy.
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Some Consequences of Gravitational Fields
The notes which follow are included as illustrations of the previous theory.

Kepler’s Laws
Applied to the Solar System these laws are as follows:
• The planets move in elliptical orbits with the Sun at one focus,
• The radius vector drawn from the sun to a planet sweeps out equal areas in equal

times.
• The square of the orbital period of a planet is proportional to the cube of the semi-

major axis of the orbit.

Tides
The two tides per day that we observe are caused by the unequal attractions of the
Moon (and Sun) for masses at different sides of the Earth.  In addition the rotation of
the Earth and Moon also has an effect on tidal patterns.

The Sun causes two tides per day and the Moon causes two tides every 25 hours.
When these tides are in phase (i.e. acting together) spring tides are produced.  When
these tides are out of phase neap tides are produced. Spring tides are therefore larger
than neap tides.  The tidal humps are held ‘stationary’ by the attraction of the Moon
and the earth rotates beneath them.  Note that, due to tidal friction and inertia, there is
a time lag for tides i.e. the tide is not directly ‘below’ the Moon.  In most places tides
arrive around 6 hours late.

Variation of “g” over the Earth’s Surface
The greatest value for “g” at sea level is found at the poles and the least value is found
at the equator. This is caused by the rotation of the earth.

Masses at the equator experience the maximum spin of the earth.  These masses are in
circular motion with a period of 24 hours at a radius of 6400 km.  Thus, part of a
mass’s weight has to be used to supply the small central force due to this circular
motion.  This causes the measured value of “g” to be smaller.
Calculation of central acceleration at the equator:

a  =  v
2

r    and   v  =  2πr
T   giving  a  =  4π

2r
T2     =  4π

2 x 6.4 x 106

(24 x 60 x 60)2    =  0.034 m s-2

Observed values for “g”: at poles = 9.832 m s-2  and at equator = 9.780 m s-2

difference is  0.052 m s-2

Most of the difference has been accounted for.  The remaining 0.018 m s-2 is due to
the non-spherical shape of the Earth. The equatorial radius exceeds the polar radius by
21 km.  This flattening at the poles has been caused by the centrifuge effect on the
liquid Earth as it cools.  The Earth is 4600 million years old and is still cooling down.
The poles nearer the centre of the Earth than the equator experience a greater pull.

In Scotland “g” lies between these two extremes at around 9.81 or 9.82 m s-2. Locally
“g” varies depending on the underlying rocks/sediments.  Geologists use this fact to
take gravimetric surveys  before drilling.  The shape of underlying strata can often be
deduced from the variation of “g” over the area being surveyed.  Obviously very
accurate means of measuring “g” are required.


