Exercise 6

Using the Acceleration Equation

- 1. What does an acceleration of 5ms⁻² mean? (1)
- During a game of ten-pin bowling, a player gives bowling ball an acceleration of 3 ms⁻² for 1.2 s.
 Assuming the bowling ball was accelerated from rest, calculate the final velocity of the bowling ball. (3)
- 3. A supertanker travelling at 13 ms⁻¹ decelerates at a rate of 0.03 ms⁻². How long does it take to come to a complete stop?(3)
- 4. A rocket accelerates at 5.2 ms⁻² for 10 minutes to reach a final velocity of 6200 ms⁻². Calculate the initial velocity of the rocket.(3)

Exercise 6 Using the acceleration equation.

1. An acceleration of Shest means the speed is increasing by Shest every second.

2.
$$Q = \frac{V - U}{t}$$

 $3 = \frac{V - O}{1 \cdot Z}$
 $3 \times 1 \cdot 2 = V - O$
 $V = 3 \cdot 6 \times 10^{-1}$

3.
$$a = \frac{V - U}{t}$$
 $-0.03 = 0 - 13$

need this "-" as table is decelerating.
 $-0.03t = -13$
 $t = -13$

$$a = \frac{1-u}{t}$$

$$5.2 = 6200-u$$

$$600$$

Exercise 8

The Bouncing Ball

1. The velocity-time graph shown below describes the motion of a ball which has been thrown straight up into the air then allowed to fall to the ground.

- (a)State the direction of the ball from zero to 1s(1)
- (b)State the direction of the ball from 1s to 2.2s(1)
- (c)At what time does the ball reach its maximum height from its starting point?
- (d)Calculate the maximum height that the ball reaches from the throwers hand.(3)
- (e) Use the graph to find the time the ball takes to fall from its highest point until it hits the ground (1)
- (f) Calculate the distance the ball falls from its highest point until it hits the ground(3)

Exercise 8.
The bouncing ball.
1. (a) upwards
(b) downwards
© maximum height at t=1s.
(d) Maximum height = area under graph from 0-1s
= \frac{1}{2} x base x height
= ½ × 1 × 10
= <u>Sm.</u>
(e) 2:2-1 = 1:2s
(f) distance ball falls = area under graph from 1s-> 2.2s.
= \frac{1}{2} x base x height
= ½ × 1.2 × (-12)
= -7.2m. P-ve-sigh because the ball is falling the ball falls 7.2m downward