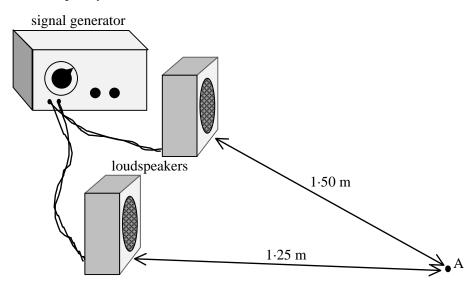
Physics Higher Level Radiation and Matter Practice Unit Assessment

Time 45 minutes


Read Carefully

- 1 All questions should be attempted.
- 2 Enter the question number clearly beside the answer to each question.
- 3 Care should be taken to give an appropriate number of significant figures in the final answers to calculations.
- 4 The following data should be used when required.

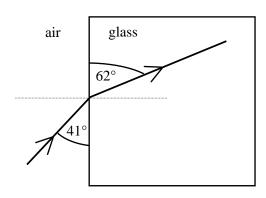
Speed of light in vacuum c	3.00 x 10^8 m s ⁻¹	Planck's constant h	6⋅63 x 10 ⁻³⁴ J s
Magnitude of the charge on electron e	1.60 x 10 ⁻¹⁹ C	Mass of electron $m_{\rm e}$	9∙11 x 10 ^{–31} kg
Acceleration due to gravity g	9⋅8 m s ⁻²	Mass of proton $m_{\rm p}$	1.67 x 10 ^{−27} kg

NOTE: This is a **trial paper** and contains questions **of the type** that will be encountered in the actual unit assessment. The threshold of attainment of the unit assessment (pass mark) is 18 marks.

1. Two loudspeakers are connected to a signal generator which produces a steady note with a frequency of 3400 Hz.

- (a) Calculate the wavelength of the sound waves being produced by the loudspeakers given that the speed of sound in air is 340 m s^{-1} .
- (b) A microphone is placed at position A which is 1.25 m from one loudspeaker and 1.50 m from the other. State, providing evidence for your answer, whether constructive or destructive interference will be found at this point.
- (c) The experiment is moved from a large open space to a small room in which there are many reflections of sound from the walls. Why would this make it very hard to detect accurately the position of a maxima or minima of sound?

(5)


(3)

2

2

1

- 2. (a) What is the velocity of light in air?
 (b) What will be the velocity of light within a lens made of glass with a refractive index of 1.48?
- 3. Find the refractive index of the glass block shown below.

2

2

Trial Unit Assessment-Radiation and Matter

4.	from a light source. What separation from the light source would be required to produce		
	a light intensity of 0.25 W m^{-2} ?	(2)	
5.	The work function of a metal is 6.4×10^{-19} J.		
	(a) Explain what is meant by the term 'work function'.	1	
	(b) Light with a frequency of 1.2×10^{15} Hz. is shone onto the metal surface.		
	Find whether or not the photons of this light will cause the photoelectric effect to take place.	2	
	(c) The light source is now replaced with a light source which produces light with a frequency of 1.5×10^{15} Hz.		
	(i) The photons from this source contain more energy than is required to release the electrons. How much extra energy is available after the electron has been released?	2	
	(ii) Into what energy type will this extra energy be converted?	1	
	(iii) Photons come from three lamps that emit red, green and blue light. Which of these lamps produces photons with the highest energy?	1	
		(7)	
6.	The equation for a nuclear reaction is given below.		

$$^{235}_{92}$$
U + $^{1}_{0}$ n \rightarrow $^{140}_{58}$ Ce + $^{94}_{40}$ Zr + $^{1}_{0}$ n + $^{1}_{0}$ n + energy

- (*a*) State whether this is a fission or fusion reaction.
- (*b*) Explain the difference between a spontaneous fission reaction and an induced fission reaction.
- (c) (i) Explain, using $E = mc^2$, how this nuclear reaction results in the production of energy.
 - (ii) Using the information given below, and any other data required from the front cover, calculate the energy released in the above nuclear reaction.

mass of $^{235}_{92}$ U	$= 390.173 \text{ x } 10^{-27} \text{ kg}$	
mass of $^{140}_{58}$ Ce	$= 232.242 \text{ x } 10^{-27} \text{ kg}$	
mass of ${}^{94}_{40}$ Zr	= 155.883 x 10 ⁻²⁷ kg	
mass of 1_0 n	$= 1.675 \text{ x } 10^{-27} \text{ kg}$	(7)

1

2

2

2

- 7. (a) State **two** factors that determine the risk of biological harm from ionising radiation.
 - (b) A welder uses radioactive materials to help detect welding faults in a pipeline. Over a period of a year he receives 6 mGy of gamma radiation and 0.5 mGy of alpha radiation. Use the table below to calculate the total dose equivalent he receives for the year?

Type of radiation	Quality factor, Q
X-rays	1
gamma rays	1
beta particles	1
slow neutrons	5
fast neutrons	10
alpha particles	20

2

2

(4)