Unit 3 practice NAB

- 1.a) wavelength = v/f = 340/3400 = 0.1m
 - b) path difference = 1.5 1.25 = 0.25m this is 2.5 wavelengths, so destructive interference.
 - c) too many reflections.
- 2. a) $3 \times 10^8 \text{ms}^{-1}$.
 - b) $n = v_1/v_2$ so $1.48 = 3 \times 10^8/v_2$ $v_2 = 2 \times 10^8 \text{ms}^{-1}$.
- $3. n = \sin 49/\sin 28 = 1.6$
- 4. $I_1(d_1)^2 = I_2(d_2)^2$ so $4 \times 2^2 = 0.25 \times d^2$ d = 8m
- 5. a) energy required to free an electron from an atom.
- b) E = hf = $6.63 \times 10^{-34} \times 1.2 \times 10^{15} = 7.96 \times 10^{-19} \, \text{J}$ this > work function so photoelectric effect occurs.
 - c) E = hf = $6.63 \times 10^{-34} \times 1.5 \times 10^{15} = 9.95 \times 10^{-19}$ extra energy = 9.95×10^{-19} - 6.4×10^{-19} = 3.55×10^{-19} J
 - ii) this energy changes to light.
 - iii) blue (highest frequency)
- 6. a) fission (1 nucleus becomes 2 nuclei)
- b) spontaneous nucleus breaks up, induced caused by a neutron.

- 6. c) i) mass is "lost" in the reaction, this is changed to energy.
- ii) Mass before = $390 \cdot 173 \times 10^{-27} \text{ kg} + 1 \cdot 675 \times 10^{-27} \text{ kg}$ = 391.848 kg

mass after =
$$232.242 \times 10^{-27} \text{ kg} + 155.883 \times 10^{-27} \text{ kg} + 2(1.675 \times 10^{-27} \text{ kg})$$

$$= 391.475 \text{ kg}$$

mass lost =
$$0.373 \times 10^{-27} \text{ kg}$$

energy = mc^2

=
$$0.373 \times 10^{-27} \text{ kg } \times (3 \times 10^8)^2$$

= $3.36 \times 10^{-11} \text{ J}$

- 7. a) the absorbed dose, the kind of radiation, e.g. γ β a,,, slow neutron, or the body organs or tissues exposed.
 - b) H = $D\omega_r$ (ω_r was formerly known as Q) H= $(6x10^{-3}~x~1)$ + $(0.5x10^{-3}~x~20)$ H= $16~x~10^{-3}~Sv$