Section 3 - Resistance

Voltage, Current and Resistance

In this section you can use the equation:

voltage = current x resistance

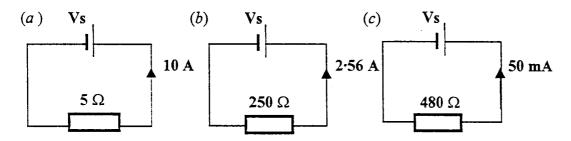
also written as:

where

Helpful Hint.

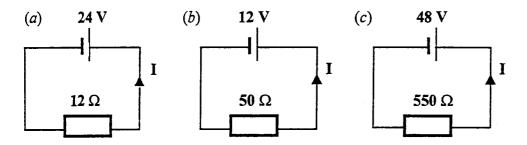
Many appliances run from mains voltage which is 230 V ac.

Useful units for electricity are:

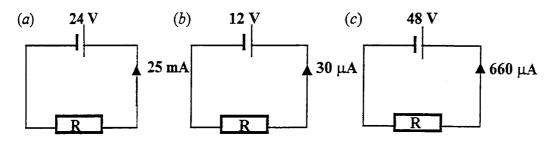

1
$$\mu$$
A = 0.000 001 A = 1 x 10-6 A
1 μ A = 0.001 A = 1 x 10-3 A

Convert the current from milliAmps or microAmps into Amps before using Ohm's Law.

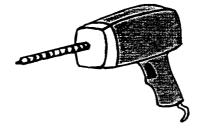
1. Find the missing values in the following table.


	Voltage (V)	Current (A)	Resistance (Ω)
(a)		15	35
(b)		0-2	1 000
(c)	230		125
(d)	24	v .	550
(e)	120	12	
(/)	6	6·25 x 10·3	

2. Look at the following circuits and calculate the supply voltage in each case:



©GMV Science. Photocopiable only by the purchasing institution.


3. Look at the following circuits and calculate the current in each case:

4. Look at the following circuits and calculate the unknown resistance in each case:

- 5. Calculate the resistance of a lamp if the current through it is 10 mA when operated by a 24 V supply.
- 6. A power drill is operated at mains voltage and has a resistance of 1.5 k Ω . Calculate the current through the drill.

- 7. The maximum current an electric motor can safely handle is 10 mA and it has a resistance of 360 Ω . Calculate its safe operating voltage.
- 8. A cooker draws a maximum current of 28.75 A and has a resistance of 8 Ω . At what voltage should it operate?
- 9. Hairdryers work from the mains voltage and can have currents of up to 15 mA flowing through them. Calculate the resistance of the hairdryer.
- 10. Over head cables have resistance of 25 k Ω . If the voltage across the cables is 4 000 V calculate the current through them.