

National 5 Physics

Solutions to Waves & Radiation exam questions

1 (a)

 $3 \times 10^8 \text{ m s}^{-1}$ (i)

[number and unit must be correct]

OR 3 00 000 000 m s⁻¹

(ii)

d = v t

 $= (3 \times 10^8) \times 0.68$

(1) (1)

= 20 400 000 m

(1) [number and unit must be correct]

(b)

 $v = f\lambda$

(1)

 $3.0 \times 10^{8} = 2100 \times 10^{6} \times \lambda$

(1)

$$\lambda = \frac{3 \cdot 0 \times 10^8}{2100 \times 10^6}$$

= 0.14 m

(1) [number and unit must be correct]

2	(a)	(i)	Diagram 2 (represents ionized atom) An electron has been removed (from the atom)	(1) (1)
		(ii)	Alpha (accept symbol α)	(1)
	(b)		Use forceps/don't point at eyes/wear gloves etc.	(1)
	(c)	(i)	Instrument sterilisation/treatment of cancer	(1)
		(ii)	Beta radiation (accept symbol β)	(1)

- 3. B
- 4. E
- 5. C
- 6. C
- 7. D
- 8. A

			Marks
9	(a)	3 x 10 ⁸ m s ⁻¹ [number and unit must be corre	[1] ect]
		OR	
		300 000 000 m s ⁻¹	
	(b)	$v = f \lambda$	
		V-1 N	(1)
		$3\times10^8 = 12\times10^9 \times \lambda$	
		$3 \times 10^{\circ} = 12 \times 10^{\circ} \times \kappa$	(1)
		$\lambda = 0.025 \text{ m}$	
			(1)
		[number and unit must be correct]	

10. FM waveband has short(er) wavelength (1)
These radio waves do not diffract around hills (1)

11. photodiode/phototransistor/CCD (sensor from digital camera) (1)

Note: IR detectors such as thermometer/thermopile/ thermogram are not suitable for the given context.

Not infra red camera OR infra red detector

12 (a)

1500 m s⁻¹

[number and unit must be correct]

(1)

(b)

$$v = \frac{d}{t}$$
 (1)

$$1500 = \frac{25}{t}$$
 (1)

t = 0.0167(s) (1)

(1) unit not required here unless this time is left

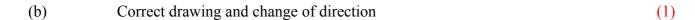
as the final answer

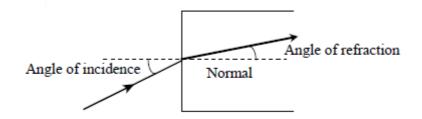
total time= $2\times0\cdot0167=0\cdot0334s$

(1)

sig. fig. range (if no intermediate rounding) : 0.03, 0.033, 0.0333.

(c) (i) Time interval is unchanged


1


1

(ii) Speed (of sound in water) is same/unchanged. Frequency has no effect (on the time taken for the wave to travel the 50m)

13. The radiation detector would detect a higher level of radiation (1) (a) count rate would be higher where there was a crack in the aircraft (b) (i) Time taken for the (radio) activity (of a radioactive source) to (1) reduce by half. (ii) Source Y (1) gamma can penetrate through the metal aircraft (1) Long half life (1) Point away from face / people (1) (c) OR use tongs/ forceps OR Use lead (lined) aprons/gloves etc. (d) 48/12 = 4 (half lives) (1) $128 \rightarrow 64 \rightarrow 32 \rightarrow 16 \rightarrow 8 \text{ (MBq)}$ (1) for halving (1) for final answer [number and unit must be correct]

14. (a) Greater (1)

All 3 labels correctly shown (1)

- 15 (a) Selection of any two correct count rate values from the graph, where second value = half of the first value. (1)
 Half-life = 2 hours (1) [number and unit must be correct]
 - (b) Any two valid answers 1 mark each.
 e.g. two from; atmosphere, radon gas, cosmic rays, underlying geology (rocks), nuclear weapons tests
 - (c) A type of electromagnetic radiation / wave/ ray. (1)

16. (a) (i) $D = \frac{E}{m}$ (1)

$$D = \frac{6.0 \times 10^{-6}}{0.5} \tag{1}$$

D = 12 μGy [number **and** unit must be correct] (1) (or 12×10^{-6} Gy)

(ii) $H = DW_R$ (1)

$$H = (12 \times 10^{-6}) \times 20 \tag{1}$$

H = 240 μSv [number **and** unit must be correct] (1) (or 2.4×10^{-4} Sv)

(iii) $A = N \over t$ (1)

= 24,000 (1) (5 x 60)

 $= 80 \text{ Bq} \qquad \text{[number and unit must be correct]} \tag{1}$

(b) Fission (1)

- 17. C
- 18. E
- 19. E

20	(a)		gamma radiation can penetrate the body OR beta radiation cannot penetrate the body	Marks (1)
	(b)		$12 \rightarrow 6 \rightarrow 3 \rightarrow 1.5$ (MBq) 3 half-lives (can be implied)	(1)
			$3 \times 13 = 39 \text{ (hours)}$	(1)
			5pm on May 1st (or 17:00 on 1st May)	(1)
	(c)	(i)	All windows shaded	(1)
		(ii)	The blacker/darker/foggier the film, the more radiation they have been exposed to.	(1)

			Marks
21	(a)	Radioastron has a higher orbit	
		OR	(1)
		Hubble has a lower orbit	
	(b)	P = X-rays	(1)
		Q = Ultra violet/UV both must be correct	
	(c)	Any one of the following;	
		(Black bulb) thermometer, photodiode,	
		phototransistor, thermofilm, thermistor, thermopile,	
		thermocouple, thermographic film, heat sensitive paper,	
		IR film, CCD	(1)

22. (a) E

$$D = \frac{E}{m} \tag{1}$$

$$1 \cdot 5 \times 10^{-3} = \frac{E}{1.4} \tag{1}$$

$$E = 2 \cdot 1 \times 10^{-3}$$
 J [number **and** unit must be correct] (1) (= 2.1 mJ)

(b)
$$18 \div 6 = 3$$
 half-lives (1)

$$320 \rightarrow 160 \rightarrow 80 \rightarrow 40 \text{ MBq}$$

				Marks
23.	(a)	Fiss	ion	(1)
		(induced fission accepted but NOT chain reaction)		
	(b)	P	(slow) neutron	
		Q	(fissionable) nucleus	
		R	(fast) neutron	
		S	fission fragment/daughter product	(2)

- 24. B
- 25. C
- 26. E
- 27. A
- 28. C