Hubble discovers our universe is expanding

edwin_hubble_with_pipe

In the 1920s, Edwin Hubble had access to the Hooker telescope on Mount Wilson, Los Angeles.  This was the largest telescope in the world at that time.  His first breakthrough was the discovery of a cepheid variable star in the Andromeda nebula.  This enabled him to calculate the distance to Andromeda and he quickly realised this was not a nebula but a galaxy outside the Milky Way.
This video follows his work.

Hubble – nebulae or galaxies? from mr mackenzie on Vimeo.

Hubble then turned his attention to other galaxies, looking for cepheid variable stars that would allow him to determine their distances from the Milky Way.  He used redshift to calculate their recession velocity and plotted a graph against distance.

hubble_plot

He found that the recession velocity (v) was directly proportional to distance (d).  We can express this relationship as

v = H_o d

where H_o is the Hubble constant.  Astronomers agree that the current value of the constant is

H_o = 72 kms^{-1}Mpc^{-1}.

Since this is a  SQA course, we need to convert into SI units – giving

H_o = 2.3 \times 10^{-18}s^{-1}

In this video, Professor Jim Al-Khalili looks at Hubble’s work on the expanding universe.

Hubble’s discovery of the expanding universe from mr mackenzie on Vimeo.

Although he was American, Edwin Hubble transformed himself into a tea drinking, pipe smoking, tweed wearing Englishman during his time as a Rhodes Scholar at Oxford.  He probably wouldn’t approve of this last video.

Unfortunately, astronomers were not eligible for the Nobel Prize for Physics.  The rules have now been changed.

redshift

more redshift

 

and Yoker Uni’s video about Doppler and stuff

 

While redshift can be used to tell us about the recession velocity of (non relativistic) galaxies, we also need to find a way to measure the distance to these galaxies.  Astronomers have two main methods to measure these distances; parallax (more parallax here) and cepheid variable stars – there’s a Khan Academy video on cepheid variable stars.

using redshift to map the expanding universe from mr mackenzie on Vimeo.

special relativity

Special relativity is tricky get get your head round.  Let’s start with a video about the speed of light.

This video follows Einstein’s thought process as he worked through his special theory of relativity.

special relativity from mr mackenzie on Vimeo.

time dilation

A Tale of Two Twins from Oliver Luo on Vimeo.

another take on special relativity and the twins paradox

 

…and the Glesga Physics version

 

length contraction

This video has helpful examples to explain length contraction.

Sometimes it’s easier to imagine we’re a stationary observer watching a fast moving object go whizzing past.  For other situations, it’s better to put yourself into the same frame of reference as the moving object, so that everything else appears to be moving quickly, while you sit still.  The muon example in this video shows how an alternative perspective can work to our advantage in Special Relativity.

Another way to think about this alternative frame of reference is that it’s hard to measure distances when you yourself are moving really quickly.  Think about it, you’d get tangled up in your measuring tape like an Andrex puppy.

Screen Shot 2016-02-09 at 23.44.47

image: trotonline.co.uk

It would be far easier to imagine you’re the one sitting still and all the objects are moving relative to your position, as if your train is stationary and it’s everything outside that’s moving.  That keeps everything nice and tidy – including your measuring tape.  Got to love Einstein’s postulates of special relativity.

Screen Shot 2016-02-09 at 23.47.59

image: mirror.co.uk

 

cosmic microwave background radiation

The cosmic microwave background radiation (CMB) is radiation left over from the big bang.  When the universe was very young, just as space became transparent to light, electromagnetic energy would have propagated through space at a much shorter wavelength.  Nowadays, the temperature of space has fallen to approximately 2.7 K (that’s 2.7 K above absolute zero!) and, using Wien’s Law, we can confirm that the peak wavelength of the electromagnetic radiation is so long that the background radiation lies in the microwave portion of the em spectrum.

The CMB was first detected in 1964 by Richard Woodrow Wilson and Arno Allan Penzias, who worked at Bell Laboratories in the USA.

Read more

star colours

Astronomers often refer to the colour of a star, which seems a bit odd because we mostly see stars as white twinkly objects.  However, even with the naked eye, we can look closely at certain stars and detect a hint of colour – just look at this image of the Orion constellation.  As we view him, the left shoulder has a red coloured star, while the right shoulder and right foot appear to be blue.

320px-Orion_3008_huge

image: Orion 3008 huge.jpg, Wikipedia

Now click on the image to see the same view at much higher resolution.  In the hi-res photo, look at the stars in the background.  They’re not all white!

What can the colour of a star tell us?

Read more