2011 Physics

Intermediate 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2011

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Delivery: Exam Operations Team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Delivery: Exam Operations Team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Physics - Marking Issues

The current in a resistor is $1 \cdot 5$ amperes when the potential difference across it is $7 \cdot 5$ volts. Calculate the resistance of the resistor.

1.	Answers	Mark + Comment	Issue
	$V=I R$	(1/2)	Ideal answer
	$7 \cdot 5=1 \cdot 5 R$	(1/2)	
	$R=5.0 \Omega$	(1)	
2.	$5 \cdot 0 \Omega$	(2) Correct answer	GMI 1
3.	$5 \cdot 0$	(11/2) Unit missing	GMI 2 (a)
4.	4.0Ω	(0) No evidence/wrong answer	GMI 1
5.	$\underline{\Omega}$	(0) No final answer	GMI 1
6.	$R=\frac{V}{I}=\frac{7 \cdot 5}{1 \cdot 5}=4 \cdot 0 \Omega$	(1122) Arithmetic error	GMI 7
7.	$R=\frac{V}{I}=4 \cdot 0 \Omega$	(1/2) Formula only	GMI 4 and 1
8.	$R=\frac{V}{I}=\square \Omega$	(1/2) Formula only	GMI 4 and 1
9.	$R=\frac{V}{I}=\frac{7 \cdot 5}{1.5}=\underline{\square}$	(1) Formula + subs/No final answer	GMI 4 and 1
10.	$R=\frac{V}{I}=\frac{7 \cdot 5}{1 \cdot 5}=4 \cdot 0$	(1) Formula + substitution	GMI 2 (a) and 7
11.	$R=\frac{V}{I}=\frac{1 \cdot 5}{7 \cdot 5}=5 \cdot 0 \Omega$	(1/2) Formula but wrong substitution	GMI 5
12.	$R=\frac{V}{I}=\frac{75}{1 \cdot 5}=5 \cdot 0 \Omega$	(1⁄2) Formula but wrong substitution	GMI 5
13.	$R=\frac{I}{V}=\frac{7 \cdot 5}{1 \cdot 5}=5 \cdot 0 \Omega$	(0) Wrong formula	GMI 5
14.	$V=I R \quad 7.5=1.5 \times R \quad R=0.2 \Omega$	(11/2) Arithmetic error	GMI 7
15.	$V=I R$		
	$R=\frac{I}{V}=\frac{1 \cdot 5}{7 \cdot 5}=0 \cdot 2 \Omega$	(1/2) Formula only	GMI 20

2011 Physics Intermediate 2

Marking scheme
Section A

1. D 11. D
2. B
3. B
4. E
5. B
6. D
7. D
8. E
9. E
10. B
11. C
12. A
13. C
14. E
15. D
16. B
17. A
18. A
19. A

2011 Physics Intermediate 2		
Sample Answer and Mark Allocation	Notes	Marks
21. (a) $\begin{align*} s & =v t \\ t & =\frac{11}{20} \tag{1/2}\\ & =0.55 \mathrm{~s} \quad \text { Accept } 0.6 \mathrm{~s} \tag{1} \end{align*}$	Accept $D=S T$ on its own for $1 / 2$ mark	2
(b) $\begin{align*} & =\frac{v-u}{t} \tag{1/2}\\ v & =10 \times 0.55 \tag{1/2}\\ & =5.5 \mathrm{~m} / \mathrm{s} \tag{1} \end{align*}$ Accept 6 m/s	$\begin{aligned} & \mathrm{g}=9 \cdot 8 \rightarrow 5,5 \cdot 4,5 \cdot 39 \\ & \mathrm{~g}=9 \cdot 81 \rightarrow 5,5 \cdot 4,5 \cdot 40,5 \cdot 396 \end{aligned}$	2
(c)	Figures on axis must be consistent with parts (a) and (b) above s vs $t \rightarrow$ No marks	2

Sample Answer and Mark Allocation		Notes	Marks
(d) $H=D W_{\mathrm{R}}$	(1/2)		
$=15 \times 10^{-6} \times 1$	(1/2)		
$=1.5 \times 10^{-5} \mathrm{~Sv} \quad\left(15 \times 10^{-6}\right)$			2
(e) Ionisation is when an atom gains or loses electrons must have one only needed	(1)	No (1/2)	1
			Total 9

[^0]

Sample Answer and Mark Allocation		Notes	Marks
30. (a) $\begin{array}{rlr} P & =\frac{1}{f} & \\ & =\frac{1}{0 \cdot 03} & \\ & =33 \mathrm{D} & \end{array}$ Accept 30, 33•3, $33 \cdot 33$	(1/2) (1/2) (1)		2
(b) Accurate placement of object and lens* Appropriate rays drawn (minimum of 2 rays) Image (must be drawn or labelled) *Scale wrong \rightarrow lose this mark	$\begin{gathered} \text { (1) } \\ \text { (1) } \\ \text { (1) } \end{gathered}$		3
(c) Long sight Converging lens brings light rays to focus on retina by reducing focal length (or equivalent). Eye lens not powerful enough -0	(1) (1)		2
			Total 7

Sample Answer and Mark Allocation	Notes	Marks
$\text { 31. (a) } \begin{aligned} N & =A t \\ & =300 \times 10^{-6} \times 24 \times 60 \times 60 \\ & =26 \text { (decays) or (atoms) } \\ & \text { Accept } 25 \text { or } 26 \end{aligned}$		2
(b) $2400 \rightarrow 1200 \rightarrow 600 \rightarrow 300$ (1/2) for halving ($1 / 2$) for correct number of 'halves' $3 \times 5,730=17,190 \text { years }$		2
(c) An electron (1)		1
(d) A helium nucleus OR equivalent eg $2 \mathrm{p}+2 \mathrm{n}$		1

Sample Answer and Mark Allocation					Notes	Marks
(e)	Greater	Stronger -0	More powerful -0	(1)		1
(f)	(i) (Al (ii) An	inium) wou valid answe	p α particles also	(1) (2)	Protective clothing must be justified. (Includes gloves + lead suits etc but not safety glasses) ie safety glasses can count as second mark Shielding (1) Short times (1) Point away from people (1) Increased distance (1) Wash hands (1), etc Only 1 item of clothing valid	1 2
						Total 10

[END OF MARKING INSTRUCTIONS]

[^0]: Page 9

