2011 Physics

Advanced Higher

Finalised Marking Instructions

© Scottish Qualifications Authority 2011

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Delivery: Exam Operations.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Delivery: Exam Operations may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Part One: General Marking Principles for Physics - Advanced Higher

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.
(a) Marks for each candidate response must always be assigned in line with these general marking principles and the specific Marking Instructions for the relevant question. If a specific candidate response does not seem to be covered by either the principles or detailed Marking Instructions, and you are uncertain how to assess it, you must seek guidance from your Team Leader/Principal Assessor.

1. Numerical Marking

(a) The fine divisions of marks shown in the marking scheme may be recorded within the body of the script beside the candidate's answer. If such marks are shown they must total to the mark in the inner margin.
(b) The number recorded should always be the marks being awarded. The number out of which a mark is scored SHOULD NEVER BE SHOWN AS A DENOMINATOR. ($1 / 2$ mark will always mean one half mark and never 1 out of 2.)
(c) Where square ruled paper is enclosed inside answer books it should be clearly indicated that this item has been considered. Marks awarded should be transferred to the script booklet inner margin and marked G.
(d) The total for the paper should be rounded up to the nearest whole number.

2. Other Marking Symbols which may be used

TICK	- Correct point as detailed in scheme, includes data entry.
SCORE THROUGH	- Any part of answer which is wrong. (For a block of wrong
	answer indicate zero marks.)
	\quad Excess significant figures

No other annotations are allowed on the scripts.

(a) No marks are allowed for a description of the wrong experiment or one which would not work.
Full marks should be given for information conveyed correctly by a sketch.
(b) Surplus answers: where a number of reasons, examples etc are asked for and a candidate gives more than the required number then wrong answers may be treated as negative and cancel out part of the previous answer.
(c) Full marks should be given for a correct answer to a numerical problem even if the steps are not shown explicitly. The part marks shown in the scheme are for use in marking partially correct answers.

However, when the numerical answer is given or a derivation of a formula is required every step must be shown explicitly.
(d) Where 1 mark is shown for the final answer to a numerical problem $1 / 2$ mark may be deducted for an incorrect unit.
(e) Where a final answer to a numerical problem is given in the form 3^{-6} instead of 3×10^{-6} then deduct $1 / 2$ mark.
(f) Deduct $1 / 2$ mark if an answer is wrong because of an arithmetic slip.
(g) No marks should be awarded in a part question after the application of a wrong physics principle (wrong formula, wrong substitution) unless specifically allowed for in the marking scheme - eg marks can be awarded for data retrieval.
(h) In certain situations, a wrong answer to a part of a question can be carried forward within that part of the question. This would incur no further penalty provided that it is used correctly. Such situations are indicated by a horizontal dotted line in the marking instructions.

Wrong answers can always be carried forward to the next part of a question, over a solid line without penalty.

The exceptions to this are:

- where the numerical answer is given
- where the required equation is given.
(i) $1 / 2$ mark should be awarded for selecting a formula.
(j) Where a triangle type "relationship" is written down and then not used or used incorrectly then any partial $1 / 2$ mark for a formula should not be awarded.
(k) In numerical calculations, if the correct answer is given then converted wrongly in the last line to another multiple/submultiple of the correct unit then deduct $1 / 2$ mark.
(1) Significant figures.

Data in question is given to 3 significant figures.
Correct final answer is 8.16 J .
Final answer $8 \cdot 2 \mathrm{~J}$ or 8.158 J or 8.1576 J - No penalty.
Final answer 8 J or $8 \cdot 15761 \mathrm{~J}$ - Deduct $1 / 2$ mark.
Candidates should be penalised for a final answer that includes:

- three or more figures too many
or
- two or more figures too few. ie accept two higher and one lower.

Max $1 / 2$ mark deduction per question. Max $21 / 2$ deduction from question paper.
(m) Squaring Error
$\begin{array}{ll}E_{K}=1 / 2 m v^{2}=1 / 2 \times 4 \times 2^{2}=4 \mathrm{~J} & \text { Award } 11 / 2 \quad \text { Arith error } \\ E_{K}=1 / 2 m v^{2}=1 / 2 \times 4 \times 2=4 \mathrm{~J} & \text { Award } 1 / 2 \text { for formula. Incorrect substitution. }\end{array}$
The General Marking Instructions booklet should be brought to the markers' meeting.

Physics - Marking Issues

The current in a resistor is 1.5 amperes when the potential difference across it is 7.5 volts. Calculate the resistance of the resistor.

Answers

1. $\quad V=I R$
$7 \cdot 5=1 \cdot 5 R$
$R=5 \cdot 0 \Omega$
2. $5 \cdot 0 \Omega$
3. $\quad 5 \cdot 0$
4. $4 \cdot 0 \Omega$
5. \qquad Ω
6.

$R=\frac{V}{I}=\frac{7 \cdot 5}{1 \cdot 5}=4 \cdot 0 \Omega$
7.

$$
R=\frac{V}{I}=4 \cdot 0 \Omega
$$

8.

$$
R=\frac{V}{I}=
$$

9.

$$
R=\frac{V}{I}=\frac{7 \cdot 5}{1 \cdot 5}=
$$

10. $R=\frac{V}{I}=\frac{7 \cdot 5}{1 \cdot 5}=4 \cdot 0$
11.

$$
R=\frac{V}{I}=\frac{1 \cdot 5}{7 \cdot 5}=5 \cdot 0 \Omega
$$

12. $R=\frac{V}{I}=\frac{75}{1 \cdot 5}=5 \cdot 0 \Omega$
13.

$$
R=\frac{I}{V}=\frac{7 \cdot 5}{1 \cdot 5}=5 \cdot 0 \Omega
$$

14. $V=I R \quad 7.5=1.5 \times R$ $R=0 \cdot 2 \Omega$
15. $\quad V=I R$

$$
R=\frac{I}{V}=\frac{1 \cdot 5}{7 \cdot 5}=0 \cdot 2 \Omega
$$

Mark + comment
(1/2)
(1/2)
(1)
(2) Correct Answer
(11/2) Unit missing
(0) No evidence/Wrong Answer
(0) No final answer
(11/2) Arithmetic error
(1/2) Formula only
(1/2) Formula only
(1) Formula + subs/No final answer
(1) Formula + substitution
(1/2) Formula but wrong substitution
($1 / 2$) Formula but wrong substitution
(0) Wrong formula
(11/2) Arithmetic error
(1⁄2) Formula only

Issue

Ideal Answer

GMI 1
GMI 2(a)
GMI 1
GMI 1

GMI 7

GMI 4 and 1

GMI 4 and 1

GMI 4 and 1

GMI 2(a) and 7

GMI 5

GMI 5

GMI 5

GMI 7

GMI 20

Data Sheet

Common Physical Quantities

Refractive Indices

The refractive indices refer to sodium light of wavelength 589 nm and to substances at a temperature of 273 K .

Substance	Refractive index	Substance	Refractive index
Diamond	2.42	Glycerol	1.47
Glass	1.51	Water	1.33
Ice	1.31	Air	1.00
Perspex	1.49	Magnesium Fluoride	1.38

Spectral Lines

Element	Wavelength/nm	Colour	Element	Wavelength/nm	Colour
Hydrogen	$\begin{aligned} & \hline 656 \\ & 486 \\ & 434 \end{aligned}$	Red Blue-green Blue-violet Violet Ultraviolet Ultraviolet	Cadmium	$\begin{aligned} & \hline 644 \\ & 509 \\ & 480 \\ & \hline \end{aligned}$	Red Green Blue
	410		Lasers		
	$\begin{aligned} & 397 \\ & 389 \end{aligned}$		Element	Wavelength/nm	Colour
Sodium	589	Yellow	Carbon dioxide Helium-neon	$\left.\begin{array}{c} 9550 \\ 10590 \\ 633 \end{array}\right\}$	Infrared Red

Properties of selected Materials

Substance	Density/ $\mathrm{kg} \mathrm{m}^{-3}$	Melting Point/K	Boiling Point/K	Specific Heat Capacity/ $\mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$	Specific Latent Heat of Fusion/ Jkg^{-1}	Specific latent Heat of Vaporisation/ Jkg^{-1}
Aluminium	$2 \cdot 70 \times 10^{3}$	933	2623	$9 \cdot 02 \times 10^{2}$	$3 \cdot 95 \times 10^{5}$	\ldots.
Copper	$8 \cdot 96 \times 10^{3}$	1357	2853	$3 \cdot 86 \times 10^{2}$	$2 \cdot 05 \times 10^{5}$	\ldots.
Glass	$2 \cdot 60 \times 10^{3}$	1400	\ldots.	$6 \cdot 70 \times 10^{2}$	\ldots.	\ldots.
Ice	$9 \cdot 20 \times 10^{2}$	273	\ldots.	$2 \cdot 10 \times 10^{3}$	$3 \cdot 34 \times 10^{5}$	\ldots.
Gylcerol	$1 \cdot 26 \times 10^{3}$	291	563	$2 \cdot 43 \times 10^{3}$	$1 \cdot 81 \times 10^{5}$	$8 \cdot 30 \times 10^{5}$
Methanol	$7 \cdot 91 \times 10^{2}$	175	338	$2 \cdot 52 \times 10^{3}$	$9 \cdot 9 \times 10^{4}$	$1 \cdot 12 \times 10^{6}$
Sea Water	$1 \cdot 02 \times 10^{3}$	264	377	$3 \cdot 93 \times 10^{3}$	\ldots.	\ldots.
Water	$1 \cdot 00 \times 10^{3}$	273	373	$4 \cdot 19 \times 10^{3}$	$3 \cdot 34 \times 10^{5}$	$2 \cdot 26 \times 10^{6}$
Air	$1 \cdot 29$	\ldots.	\ldots.	$\ldots \ldots$	\ldots.	\ldots.
Hydrogen	$9 \cdot 0 \times 10^{-2}$	14	20	$1 \cdot 43 \times 10^{4}$	\ldots	$4 \cdot 50 \times 10^{5}$
Nitrogen	$1 \cdot 25$	63	77	$1 \cdot 04 \times 10^{3}$	\ldots.	$2 \cdot 00 \times 10^{5}$
Oxygen	1.43	55	90	$9 \cdot 18 \times 10^{2}$	\ldots.	2.40×10^{5}

The gas densities refer to a temperature of 273 K and pressure of $1.01 \times 10^{5} \mathrm{~Pa}$.

Section A

Question			Expected Answer/s		Max Mark	Additional Guidance
1	a	i	$\begin{aligned} E & =m c^{2} \\ 2 \cdot 08 \times 10^{-10} & =m \times\left(3 \cdot 0 \times 10^{8}\right)^{2} \\ m & =\frac{2 \cdot 08 \times 10^{-10}}{9 \cdot 0 \times 10^{16}} \\ m & =2 \cdot 3 \times 10^{-27} \mathrm{~kg} \end{aligned}$	(1/2) (1/2) (1)	2	
1	a	ii	$\begin{aligned} & m=m_{\mathrm{o}} \times\left(\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}\right) \\ & 2.3 \times 10^{-27}=1.673 \times 10^{-27} \times\left(\frac{1}{\sqrt{1-\frac{v^{2}}{\left(3 \cdot 0 \times 10^{8}\right)^{2}}}}\right) \end{aligned}$ $v=2 \cdot 1 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$	(1/2) (1/2) (1)	2	
1	b	i	$\begin{aligned} E_{k} & =1 / 2 m v^{2} \\ 3.15 \times 10^{-21} & =0.5 \times 1.675 \times 10^{-27} \times v^{2} \\ v^{2} & =3.76 \times 10^{6} \\ v & =1.94 \times 10^{3}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \\ p & =m v \\ & =1.675 \times 10^{-27} \times 1.94 \times 10^{3} \\ & =\mathbf{3 . 2 5} \times \mathbf{1 0}^{-24} \mathbf{k g ~ m ~ s} \end{aligned}$	(1/2) (1/2) (1/2) (1/2)	2	For full credit, show questions must have all necessary equations stated and explicit substitutions into these equations.

Question			Expected Answer/s		Max Mark 2	Additional Guidance Must use 3.25×10^{-24} as substitution otherwise ($1 / 2$) max for equation
1	b	ii	$\begin{gathered} p=\frac{h}{\lambda} \\ 3 \cdot 25 \times 10^{-24}=\frac{6 \cdot 63 \times 10^{-34}}{\lambda} \\ \lambda=\frac{6 \cdot 63 \times 10^{-34}}{3 \cdot 25 \times 10^{-24}} \\ \lambda=2.04 \times 10^{-10} \mathrm{~m} \end{gathered}$	(1/2) (1/2) (1)		
1	c	i	Strong (nuclear) (force)	(1)	1	
1	c	ii	$10^{-14} \mathrm{~m}$	(1)	1	Allow a statement of less than $10^{-14} \mathrm{~m}$ but not a value of less than $10^{-14} \mathrm{~m}$
1	c	iii	Quark	(1)	1	Only accept (up/down) quarks

Question			Expected Answer/s		Max Mark	Additional Guidance
2	a	i	$\begin{aligned} \mathrm{I}_{\mathrm{rod}} & =1 / 3 \mathrm{~m} \mathrm{l}^{2} \\ & =1 / 3 \times 0.040 \times 0.30^{2} \\ & =1.2 \times 10^{-3} \mathrm{~kg} \mathrm{~m}^{2} \end{aligned}$	(1/2) (1/2) (1)		
		ii	$\begin{aligned} \mathrm{I}_{\text {wheel }} & =\left(5 \times \mathrm{I}_{\mathrm{rod}}\right)+\mathrm{m}_{(\mathrm{rim})} \mathrm{r}^{2} \\ & =\left(5 \times 1.2 \times 10^{-3}\right)+\left(0.24 \times 0.30^{2}\right) \\ & =6 \times 10^{-3}+0.0216 \\ & =0.0276 \\ & =\mathbf{0 . 0 2 8}\left(\mathbf{k g ~ m}^{2}\right)(\mathbf{S H O W}) \end{aligned}$	$\begin{aligned} & (1 / 2)+(1 / 2) \\ & (1 / 2)+(1 / 2) \end{aligned}$	2	($1 / 2$) for $5 \times$ answer used in (a)(i) $(1 / 2)$ for equation $\mathrm{m}_{(\mathrm{rim})} \mathrm{r}^{2}$ Equation $\mathbf{m r}^{\mathbf{2}}$ must be stated $(1 / 2)$ for numerical substitutions $(1 / 2)$ for addition sign provided previous three $1 / 2$ marks have been obtained
2	b	i	$\begin{aligned} v & =\omega r \\ 19 \cdot 2 & =\omega \times 0 \cdot 30 \\ \omega & =\frac{19 \cdot 2}{0 \cdot 30} \\ \omega & =64 \mathrm{rad} \mathrm{~s}^{-1} \end{aligned}$	(1/2) (1/2) (1)	2	
2	b	ii A	$\begin{aligned} \omega & =\omega_{0}+\alpha t \\ 0 & =64+\alpha \times 6.7 \\ \alpha & =-\frac{64}{6 \cdot 7} \\ \alpha & =-9 \cdot 6 \mathrm{rad} \mathrm{~s}^{-2} \end{aligned}$	(1/2) (1/2) (1)	2	
2	b	ii B	$\begin{aligned} \tau & =I \times \alpha \\ & =0.028 \times(-) 9.6 \\ & =(-) 0.27 \mathrm{Nm} \end{aligned}$	(1/2) (1/2) (1)	2	Must use 0.028 as show that from previous question

Question			Expected Answer/s		Max Mark	Additional Guidance
3	a		$\begin{aligned} \omega & =\frac{2 \pi}{T} \quad \text { Must have formula } \\ & =\frac{2 \times 3.14}{5.6 \times 24 \times 60 \times 60} \\ & =\mathbf{1 . 3} \times \mathbf{1 0}^{-5} \mathbf{r a d ~ s}^{-1}(\text { SHOW }) \end{aligned}$	(1/2) (1/2)	1	1 MARK ONLY
3	b		$\begin{aligned} & F_{\mathrm{C}}=F_{\mathrm{G}} \\ & M_{2} \omega^{2} r=\frac{G M_{1} M_{2}}{r^{2}} \\ & 2.0 \times 10^{30} \times\left(1.3 \times 10^{-5}\right)^{2} \times 3.6 \times 10^{10} \\ &=\frac{6.67 \times 10^{-11} \times 2.0 \times 10^{30} \times M_{1}}{\left(3.6 \times 10^{10}\right)^{2}} \\ & M_{1}=1.2 \times 10^{32} \mathrm{~kg} \end{aligned}$	(1/2) (1/2) (1/2) (1)	3	
3	c	i	$\begin{aligned} E_{\mathrm{P}} & =-\frac{G M_{1} M_{2}}{r} \\ & =-\frac{6 \cdot 67 \times 10^{-11} \times 2 \cdot 0 \times 10^{30} \times 1 \cdot 2 \times 10^{32}}{3.6 \times 10^{10}} \\ & =-4.4 \times 10^{41} \mathrm{~J}(\text { SHOW }) \end{aligned}$	(1/2) (1/2)	1	Must have negative sign. Must have equation. Or $E_{\mathrm{p}}=V M$ Must give numerical value for \boldsymbol{G} Can use $E_{\mathrm{p}}=-2 E_{\mathrm{k}}$ and $E_{\mathrm{k}}=1 / 2 m v^{2}$
3	c	ii	$\begin{aligned} v & =r \omega \quad E_{\mathrm{k}}=1 / 2 m v^{2} \\ & =3.6 \times 10^{10} \times 1.3 \times 10^{-5} \\ & =4.68 \times 10^{5} \\ E_{\mathrm{k}} & =1 / 2 m v^{2} \\ & =1 / 2 \times 2.0 \times 10^{30} \times\left(4.68 \times 10^{5}\right)^{2} \\ & =2.2 \times 10^{41} \mathrm{~J} \end{aligned}$	(1/2) (1/2) (1)	2	($1 / 2$) for both $1 / 2 m v^{2}$ and $r \omega$ or $(1 / 2)$ for $E_{\mathrm{k}}=1 / 2 m(\omega r)^{2}$ Or $E_{\mathrm{k}}=G M_{1} M_{2} / 2 r$. $(1 / 2)$ Then $(1 / 2)$ for correct substitution $E_{\mathrm{k}}=\frac{1}{2} I \omega^{2} \mathrm{OK}$ If E_{k} is stated as $-1 / 2 E_{\mathrm{p}}$ OK

Question		Expected Answer/s	Max Mark	Additional Guidance		
$\mathbf{3}$	\mathbf{c}	iii	$\left(E_{\text {total }}=E_{\mathrm{K}}+E_{\mathrm{P}}\right)$ $E_{\text {total }}=2 \cdot 2 \times 10^{41}+\left(-4 \cdot 4 \times 10^{41}\right)$ $=$ $-2 \cdot 2 \times 10^{41} \mathrm{~J}$	$\mathbf{1}$	Must use $-4 \cdot 4 \times 10^{41}$ for E_{p}.	
$\mathbf{3}$	\mathbf{d}		Frequency increases or blue shift when star approaches Frequency decreases or red shift when star recedes.	(1)	(1)	$\mathbf{2}$

Question			Expected Answer/s	Max	Additional Guidance
5	a	i	Bring a negative charged rod close to the balloon ($1 / 2$) earth (touch) sphere ($1 / 2$) remove earth ($1 / 2$) remove $\operatorname{rod}(1 / 2)$. Or Touch 2 balloons together ($1 / 2$), bring charged rod $(1 / 2)$ near one, separate balloons before removing $\operatorname{rod}(1 / 2)$ identify which balloon is positive $(1 / 2)$	2	Must be negative/polythene rod. Can be expressed by pictures If breaking earth before remove rod connection, max (1) Accept movement of positive charges.
5	a	ii	$\begin{align*} E & =\frac{Q}{4 \pi \varepsilon_{0} r^{2}} \tag{1/2}\\ & =\frac{(+) 120 \times 10^{-6}}{4 \pi \times 8.85 \times 10^{-12}(0.35)^{2}} \tag{1/2}\\ E & =(+) 8.8 \times 10^{6} \mathrm{NC}^{-1} \text { or } \mathrm{Vm}^{-1} \tag{1} \end{align*}$	2	Accept $k=9 \times 10^{9}$ this gives $E=8 \cdot 816 \times 10^{6} \mathrm{NC}^{-1}$ Accept $E=k \frac{Q}{r^{2}}$
		iii		1	($1 / 2$) curve from radius of balloon Curve must approach but not touch r axis ($1 / 2$) for zero inside sphere (0) marks if curve starting from Eaxis
5	b	i	$\begin{align*} & F=q E \tag{1/2}\\ & E_{w}=F d \tag{1/2}\\ & E_{w}=q V \tag{1/2}\\ & \left\{\begin{array}{c} \not Q V=\not Q E d \\ V=E d \end{array}\right\} \end{align*}$ $\begin{equation*} E=\frac{V}{d} \tag{1/2} \end{equation*}$	2	If only two equations stated max (1) Acceptable to leave as $V=E d$

	stio		Expected Answer/s	Max Mark	Additional Guidance
5	b	ii	$\begin{align*} & V=E \times d \\ & V=7.23 \times 10^{4} \times 489 \tag{1/2}\\ & V=3.54 \times 10^{7} \mathrm{~V} \tag{1/2} \end{align*}$	1	NB No mark for formula as incorporated into above.
5	b	iii	$I=\frac{Q}{t} \& P=I V$ (both for $1 / 2$) $\begin{equation*} I=\frac{5 \cdot 0}{348 \times 10^{-6}} \tag{1/2} \end{equation*}$ $I=14367 \cdot 8 \mathrm{~A}$ $P=14367.8 \times 3.54 \times 10^{7}$ $P=5.1 \times 10^{11} \mathrm{~W}$	2	$E=Q V \quad \text { and } \quad P=\frac{E}{t}$ Both for ($1 / 2$) mark $\begin{align*} & E=5.0 \times 3.54 \times 10^{7}=177 \times 10^{6} \\ & P=\frac{1 \cdot 77 \times 10^{8}}{348 \times 10^{-6}} \tag{1/2}\\ & P=5 \cdot 1 \times 10^{11} \mathrm{~W} \tag{1} \end{align*}$ CARE WITH ROUNDING $4 \cdot 9-5 \cdot 1 \times 10^{11} \mathrm{~W}$
5	c			2	(1) Q distribution ($1 / 2$) shape (112) direction only if acceptable shape lines should touch perpendicular to surface of balloon If clearly not touching (1) max for Q distribution

Question			Expected Answer/s	Max Mark 2	Additional Guidance
6	a	i	Increasing/changing current ($1 / 2$) leads to increasing /changing magnetic field ($1 / 2$) causes a back emf (1)		
6	a	ii	$\begin{align*} & E=-\frac{d I}{d t} L \tag{1/2}\\ & -12 \cdot 0=-\frac{d I}{d t} 0 \cdot 6 \tag{1/2}\\ & \frac{d I}{d t}=20 \\ & \frac{d I}{d t}=20 \mathrm{~A} \mathrm{~s}^{-1} \tag{1} \end{align*}$	2	If E not negative max of ($1 / 2$)
6	a	iii	(An inductor has an inductance of 1 Henry if) an emf of 1 volt is induced when a current changes at a rate of $1 \mathrm{As}^{-1}$	1	
6	a	iv	generates a large (back) emf or large induced voltage quick release of energy or indication of quick rate of change or rapid change or collapse in B-field or current	2	(1) mark for large (back) emf dependent on no incorrect Physics. $2^{\text {nd }}$ (1) mark can be given without the first (1) mark being awarded.
6	a	v	$\begin{equation*} V=I R \tag{1/2} \end{equation*}$ $12 \cdot 0=I \times 28$ $\begin{align*} & I=\frac{12 \cdot 0}{28} \\ & I=0.43 \mathrm{~A} \tag{1/2} \end{align*}$	1	

Question			Expected Answer/s	Max Mark 2	Additional Guidance If speed conversion wrong max of ($1 / 2$) for equation Or ($1 / 2$) for both equations below $v=u+a t \text { and } s=u t+\frac{1}{2} a t^{2}$ No final numerical answer required so no penalty for sig. fig. issues.
6	b		$\left\{\begin{array}{l} 99 \mathrm{~km} \mathrm{~h}^{-1}=\frac{99000}{3600}=27 \cdot 5 \mathrm{~m} \mathrm{~s}^{-1} \\ v^{2}=u^{2}+2 a s \\ 0^{2}=27 \cdot 5^{2}+2 \times-1 \cdot 0 \times s \\ 0=756 \cdot 25-2 s \\ s=\frac{756 \cdot 25}{2}=378 \mathrm{~m} \tag{1/2} \end{array}\right.$ Yes before the signal		
6	c	i	Wavelength, $\lambda=\frac{v}{f_{s}}$ $\begin{equation*} \lambda_{o b s}=\frac{v}{f_{s}}-\frac{v_{s}}{f_{s}} \tag{1} \end{equation*}$ The observed frequency, $f_{\text {obs }}=\frac{v}{\lambda_{\text {obs }}}=\frac{v}{\frac{1}{f_{s}}\left(v-v_{s}\right)}$	2	Any statement of the speed of sound changing $=0$ marks
6	c	$\begin{aligned} & \mathbf{i i} \\ & \mathbf{A} \end{aligned}$	$\begin{align*} & f_{o b s}=f_{s}\left(\frac{v}{v-v_{s}}\right) \\ & f_{\text {obs }}=294\left(\frac{340}{340-28 \cdot 0}\right) \tag{1/2}\\ & f_{\text {obs }}=320 \mathrm{~Hz} \tag{1/2} \end{align*}$	1	1 MARK ONLY Accept $320 \cdot 38 \mathrm{~Hz}$
6	c	ii B	$\begin{align*} & f_{\text {obs }}=f_{s}\left(\frac{v}{v+v_{s}}\right) \tag{1/2}\\ & f_{\text {obs }}=294\left(\frac{340}{340+28 \cdot 0}\right) \tag{1/2}\\ & f_{\text {obs }}=272 \mathrm{~Hz} \tag{1} \end{align*}$	2	Accept 271.63 Hz

Question			Expected Answer/s	Max Mark 2	Additional Guidance
7	a	i	Towards Y/inwards/downwards Cancellation of B-field between the wires OR Opposite magnetic fields caused by each wire cause attraction. $\underline{\mathbf{O R}}$ interpretation of $\mathrm{F}=\mathrm{BI} l$		
7	a	ii	$\begin{align*} & \frac{F}{L}=\frac{\mu_{0} I_{1} I_{2}}{2 \pi r} \tag{1/2}\\ & \frac{F}{L}=\frac{4 \pi \times 10^{-7} \times 4.7 \times 4.7}{2 \pi \times 360 \times 10^{-3}} \tag{1/2}\\ & \frac{F}{L}=1.2 \times 10^{-5} \mathrm{Nm}^{-1} \tag{1} \end{align*}$	2	
7	b	i	$\begin{align*} & \mathrm{F}=\frac{0 \cdot 0058+0 \cdot 0061+0 \cdot 0063+0 \cdot 0057+0 \cdot 0058+0 \cdot 0062}{6} \\ & F=0 \cdot 0060 \mathrm{~N} \tag{1} \end{align*}$ $\begin{equation*} F=B I l \tag{1/2} \end{equation*}$ $6 \cdot 0 \times 10^{-3}=B \times 1 \cdot 98 \times 0 \cdot 054$ $\begin{align*} B & =\frac{6.0 \times 10^{-3}}{1.98 \times 0.054} \tag{1/2}\\ B & =0.056 \mathrm{~T} \tag{1} \end{align*}$	3	$F=0.0059 \mathrm{~N}$ incorrect rounding deduct (1/2)
7	b	ii	Scale Reading uncertainty (SRU) $\begin{equation*} \pm 1 \text { digit } \Rightarrow \pm 0.0001 \mathrm{~N} \tag{1/2} \end{equation*}$ Random uncertainty (RU) $\begin{align*} & =\left(\frac{\max -\min }{n}\right) \\ & =\left(\frac{0 \cdot 0063-0 \cdot 0057}{6}\right)=0.0001 \mathrm{~N} \tag{1/2} \end{align*}$ $\begin{equation*} \Delta F=\sqrt{\mathrm{SRU}^{2}+\mathrm{RU}^{2}+\text { calibration uncert }^{2}} \tag{1/2} \end{equation*}$ $\begin{align*} \Delta F & =\sqrt{0 \cdot 0001^{2}+0 \cdot 0001^{2}+0 \cdot 00005^{2}}=\sqrt{2 \cdot 25 \times 10^{-8}} \\ \Delta F & =1 \cdot 5 \times 10^{-4} \mathrm{~N} \tag{1} \end{align*}$	3	

	stio		Expected Answer/s	Max Mark	Additional Guidance
7	b	iii	$\frac{\Delta B}{B}=\sqrt{\left(\frac{\Delta F}{F}\right)^{2}+\left(\frac{\Delta I}{I}\right)^{2}+\left(\frac{\Delta l}{l}\right)^{2}}$ $\begin{equation*} \frac{\Delta B}{B}=\sqrt{\left(\frac{1 \cdot 5 \times 10^{-4}}{0 \cdot 0060}\right)^{2}+\left(\frac{0 \cdot 02}{1 \cdot 98}\right)^{2}+\left(\frac{0 \cdot 0005}{0 \cdot 054}\right)^{2}} \tag{1/2} \end{equation*}$ $(1 / 2)+$ $\frac{\Delta B}{B}=\sqrt{8 \cdot 12 \times 10^{-4}}$ $\frac{\Delta B}{B}=0 \cdot 029$ $\begin{equation*} \therefore B=(0 \cdot 056) \pm 0 \cdot 0016 \mathrm{~T} \tag{1} \end{equation*}$	3	$\% \Delta \mathrm{~F}=2 \cdot 5 \%$ $(1 / 2)$ $\% \Delta \mathrm{I}=1 \cdot 0 \%$ $(1 / 2)$ $\% \Delta \mathrm{I}=0.93 \%$ $(1 / 2)$ Allow carry through of incorrect $\Delta \mathrm{F}$ must compare/combine with \% uncertainties in I and 1 to show dominance if required $2 \cdot 9 \%$ or $2 \cdot 8 \%$ of B

Question			Expected Answer/s		Max Mark	Additional Guidance
9	a		Slits/gaps/threads in horizontal and vertical direction Explanation of interference pattern	(1) (1)	2	Accept crest/trough etc In phase and out of phase Constructive and destructive The word interference alone is not enough as given in the question
9	b		$\begin{aligned} & \lambda=\frac{d \Delta x}{D} \\ & 4 \cdot 88 \times 10^{-7}=\frac{d \times 8 \cdot 0 \times 10^{-3}}{3 \cdot 6} \end{aligned}$ $d=2 \cdot 2 \times 10^{-4} \mathrm{~m}$	(1/2) (1/2) (1)	2	Beware ensure candidate is clearly finding d and $\operatorname{not} \Delta x$
9	c	i	B Larger λ gives larger x	(1) (1)	2	Second mark dependent on first Can gain first mark independently $2^{\text {nd }}$ mark dependent on correct use of Δx and d
		ii	D As horizontal dincreases horizontal x decreases As vertical d decreases vertical x increases	(1) (1/2) (1/2)	2	Second mark dependent on first Can gain first mark independently

Question			Expected Answer/s		Max Mark	Additional Guidance
10	a		A stationary wave is formed by the between waves, travelling in oppo reflecting from the end supports.	(1) (1)	2	
10	b	i	$T=m g=4 \cdot 02 \times 9 \cdot 8=39 \mathrm{~N}$ $f=\frac{1}{2 l} \sqrt{\frac{T}{\mu}}$ $f=\frac{1}{2 \times 0 \cdot 780} \sqrt{\frac{39}{1 \cdot 92 \times 10^{-4}}}$ $f=290 \mathrm{~Hz}$ Note is D	(1/2) (1/2) (1/2) (1/2)	2	No marks for formula given If m not converted to T (0)
10	b	ii	$\begin{aligned} & 2 \times \text { answer to } 10 \mathrm{bi} \\ & f=2 \times 290=580 \mathrm{~Hz} \\ & (f=2 \times 294=588 \mathrm{~Hz}) \end{aligned}$		1	

