

2009 Physics

Advanced Higher

Finalised Marking Instructions

© Scottish Qualifications Authority 2009

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from the Question Paper Operations Team, Dalkeith.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's Question Paper Operations Team at Dalkeith may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Detailed Marking Instructions – AH Physics 2009

1. Numerical Marking

- (a) The fine divisions of marks shown in the marking scheme may be recorded within the body of the script beside the candidate's answer. If such marks are shown they must total to the mark in the inner margin.
- (b) Negative marks or marks to be subtracted should not be shown. An inverted vee may be used instead.
- (c) The number recorded should always be the marks being awarded. The number out of which a mark is scored SHOULD NEVER BE SHOWN AS A DENOMINATOR. (¹/₂ mark will always mean one half mark and never 1 out of 2.)
- (d) Where square ruled paper is enclosed inside answer books it should be clearly indicated that this item has been considered. Marks awarded should be transferred to the script booklet inner margin and marked G.
- (e) Fractional marks, if awarded to individual questions, should be recorded in the grid, but the total script mark must be rounded up to the next whole number when transferred to the box at the top of the script.

2. Other Marking Symbols which may be used

TICK SCORE THROUGH	_	Correct point as detailed in scheme, includes data entry. Any part of answer which is wrong. (For a block of wrong answer indicate zero marks.)
INVERTED VEE WAVY LINE	_	A point omitted which has led to a loss of marks. Under an answer worth marks which is wrong only because a wrong answer has been carried forward from a previous
"G" "X" 米	- - -	part. Reference to a graph on separate paper. You MUST show a mark on the graph paper and the SAME mark on the script. Wrong Physics Wrong order of marks

3. Marking Symbols which may <u>not</u> be used.

"WP"	_	Marks not awarded because an apparently correct answer
"ARITH"	_	was due to the use of "wrong physics". Candidate has made an arithmetic mistake.
		(Can indicate by line through number).
"SIG FIGS or SF"	-	Candidate has made a mistake in the number of significant
		figures for a final answer.
		(Can be indicated by a line through additional figures).

4. General Instructions (Refer to National Qualifications Booklet)

- No marks are allowed for a description of the wrong experiment or one which would not work.
 Full marks should be given for information conveyed correctly by a sketch.
- (b) Surplus answers: where a number of reasons, examples etc are asked for and a candidate gives more than the required number then wrong answers may be treated as negative and cancel out part of the previous answer.
- (c) Full marks should be given for a correct answer to a numerical problem even if the steps are not shown explicitly. The part marks shown in the scheme are for use in marking partially correct answers.

However, when the numerical answer is given or a derivation of a formula is required every step **must** be shown explicitly.

- (d) Where 1 mark is shown for the final answer to a numerical problem $\frac{1}{2}$ mark may be deducted for an incorrect unit.
- (e) Where a final answer to a numerical problem is given in the form 3^{-6} instead of 3×10^{-6} then deduct $\frac{1}{2}$ mark.
- (f) Deduct $\frac{1}{2}$ mark if an answer is wrong because of an arithmetic slip.
- (g) No marks should be awarded in a part question after the application of a wrong physics principle (wrong formula, wrong substitution) unless specifically allowed for in the marking scheme.
- (h) In certain situations, a wrong answer to a part of a question can be carried forward within that part of the question. This would incur no further penalty provided that it is used correctly. Such situations are indicated by a horizontal dotted line in the marking instructions.

Wrong answers can always be carried forward to the next part of a question, over a solid line without penalty.

The exceptions to this are:

- where the numerical answer is given
- where the required equation is given.
- (i) $\frac{1}{2}$ mark should be awarded for selecting a formula.
- (j) Where a triangle type "relationship" is written down and then not used or used incorrectly then any partial ¹/₂ mark for a formula should not be awarded.
- (k) In numerical calculations, if the correct answer is given then converted wrongly in the last line to another multiple/submultiple of the correct unit then deduct $\frac{1}{2}$ mark.

 $E_K = \frac{1}{2} mv^2 = \frac{1}{2} \times 4 \times 2^2 = 4J$ (-1/2, ARITH)

 $E_K = \frac{1}{2} mv^2 = \frac{1}{2} \times 4 \times 2 = 4J$ (½, formula). Incorrect substitution.

The General Marking Instructions booklet should be brought to the markers' meeting.

Physics – Marking Issues

The current in a resistor is 1.5 amperes when the potential difference across it is 7.5 volts. Calculate the resistance of the resistor.

1.	Answers V=IR	Mark + comment $\binom{1}{2}$	Issue Ideal Answer
1.	$7 \cdot 5 = 1 \cdot 5R$ $R = 5 \cdot 0\Omega$	(1/2) (1/2) (1)	Ideal Allswei
2.	$5 \cdot 0 \Omega$	(2) Correct Answer	GMI 1
3.	5.0	(1 ¹ / ₂) Unit missing	GMI 2(a)
4.	$4 \cdot 0 \Omega$	(0) No evidence/Wrong Answer	GMI 1
5.	Ω	(0) No final answer	GMI 1
6.	$R = \frac{V}{I} = \frac{7.5}{1.5} = 4.0\Omega$	(1 ¹ / ₂) Arithmetic error	GMI 7
7.	$R = \frac{V}{I} = 4.0 \Omega$	(1/2) Formula only	GMI 4 and 1
8.	$R = \frac{V}{I} = \underline{\qquad} \Omega$	(¹ / ₂) Formula only	GMI 4 and 1
9.	$R = \frac{V}{I} = \frac{7 \cdot 5}{1 \cdot 5} = \underline{\qquad} \Omega$	(1) Formula + subs/No final answer	GMI 4 and 1
10.	$R = \frac{V}{I} = \frac{7 \cdot 5}{1 \cdot 5} = 4 \cdot 0$	(1) Formula + substitution	GMI 2(a) and 7
11.	$R = \frac{V}{I} = \frac{1.5}{7.5} = 5.0 \Omega$	(¹ / ₂) Formula but wrong substitution	GMI 5
12.	$R = \frac{V}{I} = \frac{75}{1.5} = 5.0 \Omega$	(¹ / ₂) Formula but wrong substitution	GMI 5
13.	$R = \frac{I}{V} = \frac{7 \cdot 5}{1 \cdot 5} = 5 \cdot 0 \Omega$	(0) Wrong formula	GMI 5
14.	$V=IR 7.5=1.5 \times R$ $R=0.2 \Omega$	(1 ¹ / ₂) Arithmetic error	GMI 7
15.	V=IR		
	$R = \frac{I}{V} = \frac{1.5}{7.5} = 0.2 \Omega$	(¹ / ₂) Formula only	GMI 20

Data Sheet

Common Physical Quantities

Quantity	Symbol	Value	Quantity	Symbol	Value
Gravitational					
acceleration on Earth	g	9.8 ms^{-2}	Mass of electron	m_e	9.11×10^{-31} kg
Radius of Earth	R_E	$6.4 \times 10^6 \mathrm{m}$	Charge on electron	е	-1.60×10^{-19} C
Mass of Earth	M_E	6.0×10^{24} kg	Mass of neutron	m_n	1.675×10^{-27} kg
Mass of Moon	M_M	7.3×10^{22} kg	Mass of proton	m_p	1.673×10^{-27} kg
Radius of Moon	R_M	$1.7 \times 10^6 \mathrm{m}$	Mass of alpha		C
			particle	m_{∞}	6.645×10^{-27} kg
Mean Radius of Moon			Charge on alpha		
Orbit		$3.84 \times 10^8 \mathrm{m}$	particle		$3 \cdot 20 \times 10^{-19} \mathrm{C}$
Universal constant of					
gravitation	G	$6.67 \times 10^{-11} \text{m}^3 \text{kg}^{-1} \text{s}^{-2}$	Planck's constant	h	6.63×10^{-34} Js
Speed of light in			Permittivity of		
vacuum	С	$3.0 \times 10^8 \mathrm{ms}^{-1}$	free space	ε_0	$8{\cdot}85\times10^{-12}Fm^{-1}$
Speed of sound in air	v	$3.4 \times 10^2 \mathrm{ms}^{-1}$	Permeability of		
			free space	μ_0	$4\pi \times 10^{-7} \mathrm{Hm}^{-1}$

Refractive Indices

The refractive indices refer to sodium light of wavelength 589 nm and to substances at a temperature of 273 K.

Substance	Refractive index	Substance	Refractive index
Diamond	2.42	Glycerol	1.47
Glass	1.51	Water	1.33
Ice	1.31	Air	1.00
Perspex	1.49	Magnesium Fluoride	1.38

Spectral Lines

Element	Wavelength/nm	Colour	Element	Wavelength/nm	Colour
Hydrogen	656 486 434	Red Blue-green Blue-violet	Cadmium	644 509 480	Red Green Blue
	410 397 389	Violet Ultraviolet Ultraviolet	Element	Lasers Wavelength/nm	Colour
Sodium	589	Yellow	Carbon dioxide Helium-neon	9550 10590 633	Infrared Red

Properties of selected Materials

Substance	Density/	Melting	Boiling	Specific Heat	Specific Latent	Specific
	kg m⁻³	Point/K	Point/K	Capacity/	Heat of	latent Heat of
				$Jkg^{-1}K^{-1}$	<i>Fusion/</i> Jkg ⁻¹	Vaporisation/
						Jkg ⁻¹
Aluminium	2.70×10^3	933	2623	9.02×10^2	3.95×10^{5}	
Copper	8.96×10^3	1357	2853	3.86×10^2	2.05×10^5	
Glass	2.60×10^{3}	1400		6.70×10^2		
Ice	9.20×10^{2}	273		2.10×10^{3}	3.34×10^5	
Gylcerol	1.26×10^{3}	291	563	2.43×10^{3}	1.81×10^{5}	8.30×10^5
Methanol	7.91×10^2	175	338	2.52×10^3	9.9×10^4	1.12×10^{6}
Sea Water	1.02×10^{3}	264	377	3.93×10^{3}		
Water	1.00×10^{3}	273	373	4.19×10^{3}	3.34×10^5	2.26×10^6
Air	1.29					
Hydrogen	9.0×10^{-2}	14	20	1.43×10^4		4.50×10^5
Nitrogen	1.25	63	77	1.04×10^{3}		2.00×10^5
Oxygen	1.43	55	90	9.18×10^2		2.40×10^5

The gas densities refer to a temperature of 273 K and pressure of 1.01×10^5 Pa.

2009) AH I	Physics					
Sam	Sample answer and mark allocation				Notes	Marg	gin
1.	(a)	(i)	$v = \frac{ds}{dt}$	(½)			13
			$= 6 \cdot 2t + 4 \cdot 1$	(½)		1	
		(ii)	$72 = 6 \cdot 2t + 4 \cdot 1$	(1/2)			
			$t = \frac{72 - 4 \cdot 1}{6 \cdot 2}$	(½)			
			= 11 s	(1)	10.9 s - incorrect rounding - $\frac{1}{2}$	2	
		(iii)	$a = \frac{dv}{dt}$	(1/2)	Accept $a = \frac{v - u}{t} (\frac{1}{2}),$	1	
			$= 6 \cdot 2 \mathrm{m}\mathrm{s}^{-2}$	(½)	but $u = 0$ is a wrong substitution and gives $a = 6.6 \text{ m s}^{-2}$		
	(b)	(i)	Escape velocity greater than c or 3×10^8 m s ⁻¹ or no light can escape	(1)	Ignore 'loose' language		
				(-)		1	-
		(ii)	The escape velocity is the (minimum) velocity an object must have which				
			would allow it to escape the gravitational field.	(1)		1	
		(iii)	$E_P + E_K = 0$	(½)	$E_P = E_K \Longrightarrow (0)$		
			$\frac{-GMm}{r} + \frac{1}{2}mv^2 = 0$	(1/2)	$\frac{1}{2}mv^2 = -Vm$ is ok for starting.		
			$\frac{1}{2} mv^2 = \frac{GMm}{r}$	(1/2)	Can start here for $(1\frac{1}{2})$		
			$v = \sqrt{\frac{2GM}{r}}$	(¹ / ₂)		2	

Sample answer an	nd mark allocation		Notes	Margin
(iv)	$v_e = c = \sqrt{\frac{2GM}{r}}$ (No equation (½))		Can carry forward a wrong equation derived in part (iii)	
	Data (¹ / ₂) for G $3.0 \times 10^8 = \sqrt{\frac{2 \times 6.67 \times 10^{-11} \times 4.58 \times 10^{30}}{r}}$ $r = 6.8 \times 10^3 \mathrm{m}$	(½) (1)	$v = \sqrt{\frac{GM}{r}}$ gives r = 3.4 x 10 ³ m	2
(v)		(1)	$V = 1.317 \times 10^{12}$	
	$\rho = \frac{4 \cdot 58 \times 10^{30}}{\frac{4}{3}\pi \times (6 \cdot 8 \times 10^{3})^{3}} {\binom{1}{2}} \text{ sub}$ = 3.5 × 10 ¹⁸ kg m ⁻³	(1)	If use wrong formula for volume then max (½) for density equation If $r = 3.4 \times 10^3$ m, $\rho = 2.8 \times 10^{19}$ kg m ⁻³	3

San	Sample answer and mark allocation			Notes	Marg	gin	
2.	(a)	(i)	$\omega = (48 \times 5.8) - 12 = 266$ rpm or from the graph taking $\omega = 265$ rpm	(1/2)	"SHOW" question		12
			$\omega = \frac{266 \times 2\pi}{60} = 28 \text{ rad s}^{-1}$	(1/2)	Must show 2π and 60	1	
		(ii)	$\omega = (48 \times 1.6) - 12 = 65 \text{ (rpm)}$ $\omega = \frac{65 \times 2\pi}{60} = 6.8 \text{ (rad s}^{-1}\text{)}$	$\binom{1}{2}$ $\binom{1}{2}$	Graph value 62 or 63 gives $\omega = 6.5$ or 6.6		
			$\alpha = \frac{\omega - \omega_0}{t}$	(1/2)			
			$\alpha = \frac{6 \cdot 8 - 28}{8}$	(1/2)			
			$\alpha = \frac{6 \cdot 8 - 28}{8} = -2.7 \text{ rad s}^{-2}$	(1)	final answer could be -2.6 OK with care	3	
					+ 2.7 rad s ⁻² by wrong substitution max (1½) for question		

Sample an	swer and mark allocation		Notes	Margin
(b)	(i) $I = \frac{1}{3} m l^2$	(½)		
	$= \frac{1}{3} \times 11 \times 10^{-3} \times (76 \times 10^{-3})^2$	(½)		
	$= 2 \cdot 1 \times 10^{-5} \text{ kg m}^2$	(1)	Care with units	2
	(ii) $I_{total} = 3I + I_{cylinder}$	(1/2)	$I_t = 3 \times I -(0)$	
	$= (3 \times 2 \cdot 1 \times 10^{-5}) + 1 \cdot 1 \times 10^{-6}$	(½)		
	$= 6.4 \times 10^{-5} \text{ kg m}^2$	(1)	Accept $6.5 \times 10^{-5} \text{ kg m}^2$	2
(c)	$T = I\alpha$	(1/2)	Failure to multiply by 3 in (ii) gives I = 2.2×10^{-5} and	
	$= 6.4 \times 10^{-5} \times 2.7$	(½)	$T = 5.9 \times 10^{-5} \text{ N m}$	
	$= 1.7 \times 10^{-4} \mathrm{N} \mathrm{m}$	(1)	Accept $T < 0$	2
(d)	(Moment of) inertia would increase and then one from the following: greater time to $stop/\alpha$ would decrease/ speed (of rotation) would be less	(1) (1)	Must have 'I increases' or equivalent for 1 st mark. More mass at a distance implies this.	2
			Incorrect statement about I or no statement, (0) marks	
			Any mention of angular momentum – zero for 2 nd mark	

San	Sample answer and mark allocation			Notes	Marg	gin	
3.	(a)	(i)	$\omega = 2 \pi f$	(1/2)			10
			$= 2 \times \pi \times 33 = 210$	(1/2)			
			$y = A \sin \omega t$ or $y = A \cos \omega t$	(1/2)	Ignore –ve signs. equation can be implied with incorrect "A".	2	
			$y = 2 \cdot 1 \times 10^{-3} \sin 210t$	(1/2)	Accept 207 <i>t</i> also 66 π <i>t</i> Wrong "A" max (1 ¹ / ₂)		
		(ii)	$v_{\text{max}} = \pm \omega A$ $v_{\text{max}} = \pm 210 \times 2 \cdot 1 \times 10^{-3}$ $v_{\text{max}} = \pm 0.44 \text{ m s}^{-1}$	(½) (½) (1)	$v = \pm \omega \sqrt{A^2 - y^2}$ with y = 0 (¹ / ₂) Accept 0.43 m s ⁻¹ for $\omega = 207$ $v = 0.88 m s^{-1} for A = 4.2 \times 10^{-3}$	2	

Sample answer and mark allocation		Notes	Margin
(b) $\omega = 77 \text{ rad s}^{-1}$ $A\omega = 9 \cdot 2 \times 10^{-2}$ $\therefore A = \frac{9 \cdot 2 \times 10^{-2}}{77} = 1 \cdot 2 \times 10^{-3} \text{ m}$	(¹ / ₂) (¹ / ₂) (1)	Accept a = $(-)\omega^2 A$ (¹ / ₂)	2
(c) (i) $E_{k max} = \frac{1}{2} m\omega^2 A^2$ From equation $\omega = 77 \text{ rad s}^{-1}, A = 1.2 \times 10^{-3} \text{ m}$ $E_{k max} = \frac{1}{2} \times 2.5 \times 10^{-6} \times 77^2 \times (1.2 \times 10^{-3})^2$ $E_{k max} = 1.1 \times 10^{-8} \text{ J}$		$E_{k} = \frac{1}{2}m\omega^{2}(A^{2} - y^{2}) \text{ with } y = 0 \qquad (\frac{1}{2})$ Can use $E_{k} = \frac{1}{2}mv^{2}$ with $v = 9.2 \times 10^{-2} \text{ m s}^{-1}$ Can use $E_{k} = \frac{1}{2}m(r\omega)^{2}$ with $r = 1.2 \times 10^{-3} \text{ m from } (b)$, not the radius of the 'head'	2
(ii) (ii) (ii) (ii) (i) (i) (i) ((-½) if labels/units not given on both axes	2

Sample answ	r and mark allocation		Notes	Margin	
4. (a) (i)	shape + arrows	(1)	Must be neat Majority of lines must touch at right angles Use judgement. Minimum 4 lines. 1 or 0 for question.	1	
(ii	<i>E</i> field/force from <i>A</i> and from <i>B</i> are in same direction/add up/don't cancel	(1)(1)	(Test) charge between charges experiences a force (1) E or F from each charge		
	Or	(1)	act in the same direction / add up / don't cancel (1)		
	Diagram showing field lines running between A and B – must have arrow Direction of arrow + to -	(1) (1)			
	(+)			2	
(ii	$E_A = \frac{q}{4\pi\varepsilon_0 r^2}$	(1/2)			
	$= \frac{4 \times 10^{-6}}{4 \times 3.14 \times 8.85 \times 10^{-12} \times 0.34^2} \qquad \text{sub} -$	(¹ / ₂)	(1/) is rate data merily		
	r = 0.34 = 3.1×10 ⁵ (N C ⁻¹)	$\binom{1}{2}$	$(\frac{1}{2})$ is not a data mark $(\frac{1}{2})$ for numerical value		
	$E_B = \frac{q}{4\pi\varepsilon_0 r^2}$				
	$= \frac{-2 \times 10^{-6}}{4 \times 3.14 \times 8.85 \times 10^{-12} \times 0.24^2}$		If miss out "-ve" then WP - max 2 marks - unless subsequently corrected by indicating direction eg		
	$= -3.1 \times 10^5 (\text{N C}^{-1})$	(1/2)	arrows $(\frac{1}{2})$ for numerical value		
	$\implies E_{total} = 0 (N C^{-1})$	(½)	(¹ / ₂) for numerical value	3	
	If not rounded, $E = -1.1 \times 10^{-3} \text{ N C}^{-1} (1081)$				

Sample an	swer and mark allocation		Notes	Margin
(b)	The <u>strong force</u> <u>Balances/greater than</u> the repulsive/electrostatic force or This force acts over a <u>short range</u> .	(1) ee (1)	Must get first (1) before second mark becomes available	2
(c)	The <u>strong force</u> <u>Balances/greater than</u> the repulsive/electrostatic force or This force acts over a <u>short range</u> . (i) charge $2 \times \frac{2}{3} + 1 \times -\frac{1}{3} = e$ or baryon $2 \times \frac{1}{3} + 1 \times \frac{1}{3} = 1$ (this is a proton)	(1)	If both methods attempted then deduct $(\frac{1}{2})$ for each error.	1
	(ii) Down quark & anti up quark	(1)	No need for justification (1)/(0)	1

San	nple ar	swer and mark allocation		Notes	Margin	
5.	(a)	$F = q v B$ (1) Data (¹ / ₂) $5 \times 10^{-11} = 3 \cdot 2 \times 10^{-19} \times v \times 6 \cdot 8$ (v = 2 \cdot 3 × 10 ⁷ m s ⁻¹) (v = 2 \cdot 3 × 10 ⁷ m s ⁻¹)	1/2)	"SHOW" question <u>Must</u> start with equation (1) data mark for charge of alpha particle. If q wrong, max ($\frac{1}{2}$) Deduct $\frac{1}{2}$ if unit incorrect	2	10
	(b)	$V = \frac{B}{B}$ $2 \cdot 3 \times 10^7 = \frac{E}{6 \cdot 8}$ $E = 1 \cdot 6 \times 10^8 \text{ V m}^{-1}$ (6)	[¹ / ₂) [¹ / ₂)	Must use $v = 2.3 \times 10^7$ or unrounded equivalent from part (a)		
		$q = \frac{5 \cdot 0 \times 10^{-11}}{3 \cdot 2 \times 10^{-19}} $ ((¹ / ₂) (¹ / ₂)	Allow wrong value of q to be carried through from part (a) without penalty	2	

ample ar	iswer and mark allocation	Notes	Margin	
(c)	$F = \frac{mv^2}{r}$ (½) data	(1/2)	Can use $r = \frac{mv}{qB}$ or $d = \frac{2mv}{qB}$	
	$5.0 \times 10^{-11} = \frac{6.645 \times 10^{-27} \times (2.3 \times 10^7)^2}{r}$	sub (½)	Data (½) mark	
	r = 0.070 (m) alpha particle hits at position <i>B</i> /0.14 m	(½) (1)	If answer is 0.070 (m) then lose (1) mark for not stating <i>B</i>	3
(d)	Electron will be deflected in the opposite direction Due to opposite charge	$\binom{l'_2}{(1)}$	Explanatory (1) mark only given if path statement (¹ / ₂) is awarded	
	Radius of semicircle smaller Due to (much) <u>smaller</u> mass or greater $\frac{q}{d}$	(¹) (¹ / ₂) (1)	Decrease in q is less significant so no mark available for this change in q .	3
	m		If mention 'F is constant' then (0) for last mark	

Sample answer	and mark allocation	Notes	Marg	in
6. (a) (i)	(ii) Max voltage is 3 V (iii) Max voltage is 3 V or Back emf too small (1) (iii) Magnetic field <u>collapse/falls quickly</u> (1) Large (back) emf (110 V produced) (1) (iv) $E = Pt$ $= 1.2 \times 10^{-3} \times 0.25$ $= 3 \times 10^{-4}$ (J) (½) $E = -\frac{1}{2}LI^2$ (½)	 (½) for origin (½) for shape (½) for all labels (t, I, A) (½) for 0·1 (A) If shape wrong: max of (½) for 0·1 (A) No need for unit on t axis 	2	13
(ii)		Any implication of V not big enough. "voltage through" (0)	1	
(iii)	Magnetic field <u>collapse/falls quickly</u> (1)	Not large $\frac{dI}{dt}$ statement alone		
	Large (back) emf (110 V produced) (1)	Independent marks	2	
(iv)	$= 1.2 \times 10^{-3} \times 0.25$	E = I t V, V = 110 V		
	$E = \frac{1}{2} L I^{2} $ $3 \times 10^{-4} = \frac{1}{2} \times L \times 0.1^{2} $ $L = 0.060 \text{ H} $ (1/2) (1/2) (1/2) (1)		3	

Sample a	nswer a	and mark allocation		Notes	Margi	n
(b)	(i)	Voltmeter is to monitor (supply) voltage/ voltage across inductor remains <u>constant</u>	(1)	Any statement regarding maintaining a constant V.	1	
	(ii)	Draw a graph of <i>I</i> against $1/f$ or Check $I \times f$ remains constant for all values	(1)	Graph of I v f (0 marks) Credit for implied variables.	1	
	(iii)	$I \times f = \text{constant}$ or $I \propto 1/f$	(1)		1	
(c)		will produce low frequency sounds (woofer) S2 will produce high frequency sounds (tweeter)	(1)	Only one statement required, but if both given and one wrong, max (0).		
		gh frequency capacitive reactance is low w frequency inductive reactance is low	$\binom{1/2}{(1/2)}$		2	

Sample	e answ	ver a	nd mark allocation		Notes	Marg	in
7. (a	a) (i	i)	$L = \frac{nh}{2\pi}$	(1/2)	Alternative:		8
			$=\frac{1\times 6\cdot 63\times 10^{-34}}{2\pi}$	(1/2)	$F = k \frac{Q_1 Q_2}{r^2} = \frac{mv^2}{r}$		
			$L = 1.06 \times 10^{-34} \text{ kg m}^2 \text{ s}^{-1} \text{ or kg m}^2 \text{ rad s}^{-1} \text{ or J s}^{-1}$	(1)	to find v , then $L = mvr$	2	
	(i	ii)	$mv = \frac{nh}{2\pi r}$	(1/2)	Care with penalising rounding through question		
			$mv = \frac{1 \times 6 \cdot 63 \times 10^{-34}}{5 \cdot 3 \times 10^{-11} \times 2\pi}$	(1/2)			
			$mv = 2 \cdot 0 \times 10^{-24} \text{ kg m s}^{-1}$	(1)			
			OR $mv = \frac{L}{r}$	(1/2)			
			$mv = \frac{1 \cdot 06 \times 10^{-34}}{5 \cdot 3 \times 10^{-11}}$	(1/2)			
			$mv = 2.0 \times 10^{-24} \text{ kg m s}^{-1}$	(1)	Accept $2 \cdot 1 \times 10^{-24}$	2	
	(i	iii)	$\lambda = \frac{h}{p}$	(1/2)		2	
			$=\frac{6\cdot 63\times 10^{-34}}{2\cdot 0\times 10^{-24}}$	(1/2)			
			$= 3.3 \times 10^{-10} \mathrm{m}$	(1)	Accept $3 \cdot 2 \times 10^{-10}$		
(t	o) (i	i)	The electrons would (spiral) inwards towards the nucleus. or Orbit decays / decreases	(1)	Do not accept implying energy levels or jumps. Not "collapses".	1	
	(i	ii)	Quantum mechanics.	(1)	Not quantum physics.	1	

San	nple ar	nswer and mark allocation		Notes	Marg	jin
8.	(a)	Asswer and mark allocation $B = \frac{\mu_0 I}{2\pi r}$ $1.7 \times 10^{-7} = \frac{4 \times \pi \times 10^{-7} \times I}{2 \times \pi \times 0.25}$ $I = 0.21 \text{ A}$ One tesla is the magnetic induction of a magnetic field in which a conductor of length <u>one metre</u> , carrying a current of <u>one ampere</u> (perpendicular) to the field is acted on by a force of <u>one newton</u> . (Content statement 2.2.4) $F = BII$ $F/I = 1.7 \times 10^{-7} \times 2$ $= 3.4 \times 10^{-7} \text{ N (m}^{-1})$ or	(1/2)			5
		$1.7 \times 10^{-7} = \frac{4 \times \pi \times 10^{-7} \times I}{2 \times \pi \times 0.25}$	(1/2)	substitution $(\frac{1}{2})$ is for all values, no data value.		
				Watch for acceptable cancellation of π before substitution.		
		I = 0.21 A	(1)	If left as μ_0 , then cannot get subst. (1/2) if final answer incorrect.	2	
	(b)	field in which a conductor of length <u>one metre</u> , carrying a current of <u>one ampere</u> (perpendicular) to the field is acted on by a force of <u>one newton</u> .		Must be in words and numbers. Cannot use equation with only letters eg $B = F/Il$	1	
	(c)	F = BIl	(1/2)	$F=BIlsin\theta$ not acceptable unless $sin\theta=1$		
		$F/l = 1.7 \times 10^{-7} \times 2$	(1/2)	If $I = 0.21$ A used in first method, then WP max (¹ / ₂)		
		$= 3.4 \times 10^{-7} \mathrm{N} (\mathrm{m}^{-1})$	(1)	method, then wr max $(/2)$		
		or				
		$F/l = \frac{\mu_0 I_1 I_2}{2\pi r}$	(1/2)			
		$= \frac{4 \times \pi \times 10^{-7} \times 0.21 \times 2}{2 \times \pi \times 0.25}$	(1/2)			
		$= 3.4 \times 10^{-7} \mathrm{N} (\mathrm{m}^{-1})$	(1)		2	

San	nple ar	nswer a	and mark allocation		Notes	Marg	in
9.	(a)	(i)	Division of amplitude is when some of the light <u>reflects</u> from the top of the air wedge and some is <u>transmitted/refracted</u> into the air.		Question does not specify in relation to the air wedge.		12
			or				
			Some of the light is <u>reflected</u> from a surface of a new material/medium and some of the light is <u>transmitted/refracted</u> into the new material/medium.	(1)		1	
		(ii)	$10 \Delta x = 6 \cdot 0 \times 10^{-4}$		If $\Delta x = 6.0 \times 10^{-4}$ used in		
			$\Delta x = 6.0 \times 10^{-5} (\mathrm{m})$	(1)	equation, then max (2). Lose first mark		
			$\Delta x = \frac{\lambda l}{2d}$	(1/2)			
			$6 \cdot 0 \times 10^{-5} = \frac{580 \times 10^{-9} \times 4 \cdot 0 \times 10^{-2}}{2xd}$	(½)	If (10-1) fringes, $d = 1.74 \times 10^{-4} m (max 2)$		
			d = 1.9×10^{-4} m	(1)		3	
		(iii)	$\% \Delta (\Delta x) = \frac{0.5 \times 100}{6.0} = 8.3 (\%)$	(1/2)	No need to show combination or state that $\% \Delta (\Delta x)$ is more than 3		
			$\% \Delta \lambda = \frac{10 \times 100}{580} = 1.7 ~(\%)$	(½)	times any other % Δ .		
			$\% \Delta l = \frac{0.1 \times 100}{4.0} = 2.5$ (%)	(1/2)	However, do not penalise if combined correctly, gives 8.9%		
			$\% \Delta d = 8.3 (\%)$	(1/2)	If left as fractional uncertainty, deduct (1/2)	2	

Sample a	nswer a	and mark allo	cation		Notes	Margin
(b)	(i)	Light is refle of the soap f	ected from both surfaces ilm.	(1)	This could be shown by a diagram.	
			The two (reflected) waves meet out of phase (by π or $\lambda/2$).		Second mark dependent on first mark being correct.	2
					Any argument implying standing waves, (0) marks	
	(ii)	opd.	$= 2 \times thickness \times n$	(1/2)		
			$= 2 \times 4.00 \times 10^{-6} \times 1.45$	(1/2)		
			$= 1.16 \times 10^{-5} \text{ m}$	(1)	11·6 μm	2
	(iii)	interference	nt giving destructive must have:- th difference of one λ more than	(1)	Evidence of adding one wavelength on to any figure is equivalent to first mark.	
		New opd	$= 1.16 \times 10^{-5} + 580 \times 10^{-9}$	(1/2)	$20 \lambda \rightarrow 21 \lambda$	
			$= 1.22 \times 10^{-5} \mathrm{m}$	(1/2)	12·2 μm	2

Sam	ple ar	Iswer	and 1	nark allocation		Notes	Marg	jin			
10.	(a)	(a)	(a)	(a)	A sta	ationa	ary wave is caused by interference effe	cts (½)	"Nodes/antinodes" or "superposition" imply interference. Not "combine".		7
		betw	een t	he incident and <u>reflected</u> sound.	(1/2)	2) Not "bounce", "rebound" etc					
	(b) The antinodes of the pattern are a displacement/amplitude/disturbar		odes of the pattern are areas of <u>maximu</u> ent/amplitude/disturbance	<u>um</u> (½)	Diagram alone (0) marks						
		The nodes of the pattern are areas of minimum/zero displacement/amplitude/disturbance		(¹ / ₂)		1					
	(c)		(1) e. (1)	"Fresh start". No carry through of wrong definitions of nodes/antinodes.	2						
	(d)	λ	=	$2 \times 85 \times 10^{-3}$	(1/2)						
			=	$170 \times 10^{-3} (m)$	(1/2)						
		v	=	$f \lambda$	(1/2)						
			=	$1950 \times 170 \times 10^{-3}$	(1/2)						
		v	=	330 m s^{-1}	(1)	Accept 332 m s ⁻¹	3				
						331 m s ⁻¹ rounding error.					
						If $\lambda = 85 \times 10^{-3} \text{ m, max} \frac{1}{2}$					

[END OF MARKING INSTRUCTIONS]