2009 Physics

Advanced Higher

Finalised Marking Instructions

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from the Question Paper Operations Team, Dalkeith.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's Question Paper Operations Team at Dalkeith may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Detailed Marking Instructions - AH Physics 2009

1. Numerical Marking

(a) The fine divisions of marks shown in the marking scheme may be recorded within the body of the script beside the candidate's answer. If such marks are shown they must total to the mark in the inner margin.
(b) Negative marks or marks to be subtracted should not be shown. An inverted vee may be used instead.
(c) The number recorded should always be the marks being awarded. The number out of which a mark is scored SHOULD NEVER BE SHOWN AS A DENOMINATOR. ($1 / 2$ mark will always mean one half mark and never 1 out of 2.)
(d) Where square ruled paper is enclosed inside answer books it should be clearly indicated that this item has been considered. Marks awarded should be transferred to the script booklet inner margin and marked G.
(e) Fractional marks, if awarded to individual questions, should be recorded in the grid, but the total script mark must be rounded up to the next whole number when transferred to the box at the top of the script.

2. Other Marking Symbols which may be used

TICK $-\quad$ Correct point as detailed in scheme, includes data entry.
SCORE THROUGH - Any part of answer which is wrong. (For a block of wrong answer indicate zero marks.)
INVERTED VEE - A point omitted which has led to a loss of marks.
WAVY LINE - Under an answer worth marks which is wrong only because a wrong answer has been carried forward from a previous part.
"G" - Reference to a graph on separate paper. You MUST show a mark on the graph paper and the SAME mark on the script.
"X" - Wrong Physics

* - Wrong order of marks

3. Marking Symbols which may not be used.
"WP" - Marks not awarded because an apparently correct answer was due to the use of "wrong physics".
"ARITH" - Candidate has made an arithmetic mistake. (Can indicate by line through number).
"SIG FIGS or SF" $\quad-\quad$ Candidate has made a mistake in the number of significant figures for a final answer.
(Can be indicated by a line through additional figures).

4. General Instructions (Refer to National Qualifications Booklet)

(a) No marks are allowed for a description of the wrong experiment or one which would not work.
Full marks should be given for information conveyed correctly by a sketch.
(b) Surplus answers: where a number of reasons, examples etc are asked for and a candidate gives more than the required number then wrong answers may be treated as negative and cancel out part of the previous answer.
(c) Full marks should be given for a correct answer to a numerical problem even if the steps are not shown explicitly. The part marks shown in the scheme are for use in marking partially correct answers.

However, when the numerical answer is given or a derivation of a formula is required every step must be shown explicitly.
(d) Where 1 mark is shown for the final answer to a numerical problem $1 / 2$ mark may be deducted for an incorrect unit.
(e) Where a final answer to a numerical problem is given in the form 3^{-6} instead of 3×10^{-6} then deduct $1 / 2$ mark.
(f) Deduct $1 / 2$ mark if an answer is wrong because of an arithmetic slip.
(g) No marks should be awarded in a part question after the application of a wrong physics principle (wrong formula, wrong substitution) unless specifically allowed for in the marking scheme.
(h) In certain situations, a wrong answer to a part of a question can be carried forward within that part of the question. This would incur no further penalty provided that it is used correctly. Such situations are indicated by a horizontal dotted line in the marking instructions.

Wrong answers can always be carried forward to the next part of a question, over a solid line without penalty.

The exceptions to this are:

- where the numerical answer is given
- where the required equation is given.
(i) $\quad 1 / 2$ mark should be awarded for selecting a formula.
(j) Where a triangle type "relationship" is written down and then not used or used incorrectly then any partial $1 / 2$ mark for a formula should not be awarded.
(k) In numerical calculations, if the correct answer is given then converted wrongly in the last line to another multiple/submultiple of the correct unit then deduct $1 / 2$ mark.
(1) Significant figures.

Data in question is given to 3 significant figures.
Correct final answer is 8.16 J .
Final answer $8 \cdot 2 \mathrm{~J}$ or $8 \cdot 158 \mathrm{~J}$ or $8 \cdot 1576 \mathrm{~J}$ - No penalty.
Final answer 8 J or $8 \cdot 15761 \mathrm{~J}$ - Deduct $1 / 2$ mark.
Candidates should be penalised for a final answer that includes:

- three or more figures too many
or
- two or more figures too few.
ie accept two higher and one lower.
Max $1 / 2$ mark deduction per question. Max $21 / 2$ deduction from question paper.
(m) Squaring Error

$$
\begin{aligned}
& E_{K}=1 / 2 m v^{2}=1 / 2 \times 4 \times 2^{2}=4 \mathrm{~J} \quad(-1 / 2, \text { ARITH }) \\
& E_{K}=1 / 2 m v^{2}=1 / 2 \times 4 \times 2=4 \mathrm{~J} \quad(1 / 2, \text { formula }) . \text { Incorrect substitution. }
\end{aligned}
$$

The General Marking Instructions booklet should be brought to the markers' meeting.

Physics - Marking Issues

The current in a resistor is 1.5 amperes when the potential difference across it is 7.5 volts. Calculate the resistance of the resistor.

	Answers	Mark + comment	Issue
1.	$V=I R$	(1/2)	Ideal Answer
	$7 \cdot 5=1 \cdot 5 R$	(1/2)	
	$R=5 \cdot 0 \Omega$	(1)	
2.	$5 \cdot 0 \Omega$	(2) Correct Answer	GMI 1
3.	$5 \cdot 0$	(11/2) Unit missing	GMI 2(a)
4.	$4 \cdot 0 \Omega$	(0) No evidence/Wrong Answer	GMI 1
5.	$\underline{\Omega}$	(0) No final answer	GMI 1
6.	$R=\frac{V}{I}=\frac{7.5}{1.5}=4.0 \Omega$	(11/2) Arithmetic error	GMI 7
7.	$R=\frac{V}{I}=4 \cdot 0 \Omega$	(1/2) Formula only	GMI 4 and 1
8.	$R=\frac{V}{I}=_\Omega$	(112) Formula only	GMI 4 and 1
9.	$R=\frac{V}{I}=\frac{7 \cdot 5}{1 \cdot 5}=$ \qquad Ω	(1) Formula + subs/No final answer	GMI 4 and 1
10.	$R=\frac{V}{I}=\frac{7 \cdot 5}{1 \cdot 5}=4 \cdot 0$	(1) Formula + substitution	GMI 2(a) and 7
11.	$R=\frac{V}{I}=\frac{1 \cdot 5}{7 \cdot 5}=5 \cdot 0 \Omega$	(1/2) Formula but wrong substitution	GMI 5
12.	$R=\frac{V}{I}=\frac{75}{1.5}=5.0 \Omega$	(1/2) Formula but wrong substitution	GMI 5
13.	$R=\frac{I}{V}=\frac{7 \cdot 5}{1 \cdot 5}=5 \cdot 0 \Omega$	(0) Wrong formula	GMI 5
14.	$\begin{aligned} & V=I R \quad 7 \cdot 5=1 \cdot 5 \times R \\ & R=0 \cdot 2 \Omega \end{aligned}$	(11/2) Arithmetic error	GMI 7
15.	$V=I R$		
	$R=\frac{I}{V}=\frac{1 \cdot 5}{7 \cdot 5}=0 \cdot 2 \Omega$	(112) Formula only	GMI 20

Data Sheet

Common Physical Quantities

Refractive Indices

The refractive indices refer to sodium light of wavelength 589 nm and to substances at a temperature of 273 K.

Substance	Refractive index	Substance	Refractive index
Diamond	2.42	Glycerol	1.47
Glass	1.51	Water	1.33
Ice	1.31	Air	1.00
Perspex	1.49	Magnesium Fluoride	1.38

Spectral Lines

Element	Wavelength/nm	Colour	Element	Wavelength/nm	Colour
Hydrogen	$\begin{aligned} & \hline 656 \\ & 486 \\ & 434 \end{aligned}$	Red Blue-green Blue-violet Violet Ultraviolet Ultraviolet	Cadmium	$\begin{aligned} & \hline 644 \\ & 509 \\ & 480 \\ & \hline \end{aligned}$	
	410		Lasers		
	$\begin{aligned} & 397 \\ & 389 \end{aligned}$		Element	Wavelength/nm	Colour
Sodium	589	Yellow	Carbon dioxide Helium-neon	$\left.\begin{array}{c} 9550 \\ 10590 \\ 633 \end{array}\right\}$	Infrared Red

Properties of selected Materials

Substance	$\begin{gathered} \text { Density/ } \\ \mathrm{kg} \mathrm{~m}^{-3} \end{gathered}$	Melting Point/K	Boiling Point/K	Specific Heat Capacity/ $\mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$	Specific Latent Heat of Fusion/ Jkg ${ }^{-1}$	Specific latent Heat of Vaporisation/ Jkg^{-1}
Aluminium	2.70×10^{3}	933	2623	9.02×10^{2}	3.95×10^{5}	
Copper	8.96×10^{3}	1357	2853	3.86×10^{2}	2.05×10^{5}	\ldots
Glass	2.60×10^{3}	1400	\ldots	6.70×10^{2}		\ldots
Ice	9.20×10^{2}	273	$2 \cdot 10 \times 10^{3}$	3.34×10^{5}
Gylcerol	1.26×10^{3}	291	563	2.43×10^{3}	1.81×10^{5}	8.30×10^{5}
Methanol	7.91×10^{2}	175	338	2.52×10^{3}	9.9×10^{4}	$1 \cdot 12 \times 10^{6}$
Sea Water	1.02×10^{3}	264	377	3.93×10^{3}	\cdots	
Water	1.00×10^{3}	273	373	$4 \cdot 19 \times 10^{3}$	$3 \cdot 34 \times 10^{5}$	2.26×10^{6}
Air	$1 \cdot 29$	\ldots			
Hydrogen	9.0×10^{-2}	14	20	1.43×10^{4}	4.50×10^{5}
Nitrogen	$1 \cdot 25$	63	77	1.04×10^{3}	\ldots	2.00×10^{5}
Oxygen	$1 \cdot 43$	55	90	$9 \cdot 18 \times 10^{2}$	\ldots	2.40×10^{5}

The gas densities refer to a temperature of 273 K and pressure of $1.01 \times 10^{5} \mathrm{~Pa}$.

2009 AH Physics			
Sample answer and mark allocation	Notes		
1. $\text { (a) (i) } \begin{align*} & v=\frac{d s}{d t} \tag{1/2}\\ & =6 \cdot 2 t+4 \cdot 1 \tag{1/2} \end{align*}$		1	13
(ii) $\begin{align*} & 72=6 \cdot 2 t+4 \cdot 1 \tag{1/2}\\ & t=\frac{72-4 \cdot 1}{6 \cdot 2} \tag{1/2}\\ & =11 \mathrm{~s} \tag{1} \end{align*}$	10.9 s - incorrect rounding - $1 / 2$	2	
(iii) $\begin{align*} a & =\frac{d v}{d t} \tag{1/2}\\ & =6 \cdot 2 \mathrm{~ms} \mathrm{~s}^{-2} \tag{1/2} \end{align*}$	Accept $a=\frac{v-u}{t}(1 / 2)$, but $\mathrm{u}=0$ is a wrong substitution and gives $a=6.6 \mathrm{~m} \mathrm{~s}^{-2}$	1	
(b) (i) Escape velocity greater than c or $3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \underline{\text { or }}$ no light can escape	Ignore 'loose' language	1	
(ii) The escape velocity is the (minimum) velocity an object must have which would allow it to escape the gravitational field.		1	
(iii) $\begin{align*} & E_{P}+E_{K}=0 \tag{1/2}\\ & \frac{-G M m}{r}+1 / 2 m v^{2}=0 \tag{1/2}\\ & 1 / 2 m v^{2}=\frac{G M m v^{\prime}}{r} \tag{1/2}\\ & v=\sqrt{\frac{2 G M}{r}} \tag{1/2} \end{align*}$	$E_{P}=E_{K} \Rightarrow(0)$ $1 / 2 m v^{2}=-V m$ is ok for starting. Can start here for $\left(1^{1 / 2}\right)$	2	

Sample answer and mark allocation	Notes	
(iv) $v_{e}=c=\sqrt{\frac{2 G M}{r}} \quad($ No equation $(1 / 2))$ $\begin{align*} & 3.0 \times 10^{8}=\sqrt{\frac{2 \times 6 \cdot 67 \times 10^{-11} \times 4.58 \times 10^{30}}{r}} \tag{1/2}\\ & r=6.8 \times 10^{3} \mathrm{~m} \tag{1} \end{align*}$	Can carry forward a wrong equation derived in part (iii) $\begin{aligned} & v=\sqrt{\frac{G M}{r}} \text { gives } \\ & \mathrm{r}=3.4 \times 10^{3} \mathrm{~m} \end{aligned}$	2
(v) $\begin{align*} \rho & =\frac{M}{V} \quad(1 / 2) \quad V=\frac{4}{3} \pi r^{3} \quad(1 / 2) \tag{1/2}\\ \rho & =\frac{4 \cdot 58 \times 10^{30}}{4 / 3 \pi \times\left(6 \cdot 8 \times 10^{3}\right)^{3}} \quad\left(\begin{array}{l} (1 / 2) \text { sub } \\ (1 / 2) \text { volume } \end{array}\right. \tag{1}\\ & =3.5 \times 10^{18} \mathrm{~kg} \mathrm{~m}^{-3} \end{align*}$	$\mathrm{V}=1.317 \times 10^{12}$ If use wrong formula for volume then max $(1 / 2)$ for density equation $\begin{aligned} & \text { If } \mathrm{r}=3.4 \times 10^{3} \mathrm{~m}^{2} \\ & \rho=2.8 \times 10^{19} \mathrm{~kg} \mathrm{~m}^{-3} \end{aligned}$	3

Sample answer and mark allocation		Notes	Margin	
2. (a) (i) $\omega=(48 \times 5 \cdot 8)-12=266 \mathrm{rpm}$ or from the graph taking $\omega=265 \mathrm{rpm}$ $\omega=\frac{266 \times 2 \pi}{60}=28 \mathrm{rad} \mathrm{~s}^{-1}$	$(1 / 2)$ $(1 / 2)$	"SHOW" question Must show 2π and 60	1	12
(ii) $\begin{aligned} & \omega=(48 \times 1 \cdot 6)-12=65(\mathrm{rpm}) \\ & \omega=\frac{65 \times 2 \pi}{60}=6 \cdot 8\left(\mathrm{rad} \mathrm{~s}^{-1}\right) \end{aligned}$ $\begin{aligned} & \alpha=\frac{\omega-\omega_{0}}{\mathrm{t}} \\ & \alpha=\frac{6 \cdot 8-28}{8} \\ & \alpha=\frac{6 \cdot 8-28}{8}=-2.7 \mathrm{rad} \mathrm{~s}^{-2} \end{aligned}$	(1/2) (1/2) (1/2) (1/2) (1)	Graph value 62 or 63 gives $\omega=6.5$ or 6.6 final answer could be - 2.6 OK with care $+2.7 \mathrm{rad} \mathrm{s}^{-2}$ by wrong substitution max ($1^{1 / 2}$) for question	3	

Sample answer and mark allocation		NotesCare with units	Margin	
$\text { (b) (i) } \quad \begin{aligned} I & =1 / 3 m l^{2} \\ & =1 / 3 \times 11 \times 10^{-3} \times\left(76 \times 10^{-3}\right)^{2} \\ & =2 \cdot 1 \times 10^{-5} \mathrm{~kg} \mathrm{~m}^{2} \end{aligned}$	(1/2) (1/2) (1)		2	
$\text { (ii) } \begin{aligned} I_{\text {total }} & =3 I+I_{\text {cylinder }} \\ & =\left(3 \times 2.1 \times 10^{-5}\right)+1 \cdot 1 \times 10^{-6} \\ & =6.4 \times 10^{-5} \mathrm{~kg} \mathrm{~m}^{2} \end{aligned}$	(1/2) (1/2) (1)	$I_{t}=3 \times \mathrm{I} \quad-(0)$ Accept $6.5 \times 10^{-5} \mathrm{~kg} \mathrm{~m}^{2}$	2	
$\text { (c) } \quad \begin{aligned} T & =I \alpha \\ & =6.4 \times 10^{-5} \times 2.7 \\ & =1.7 \times 10^{-4} \mathrm{~N} \mathrm{~m} \end{aligned}$	(1/2) (1/2) (1)	Failure to multiply by 3 in (ii) gives $I=2.2 \times 10^{-5}$ and $\mathrm{T}=5.9 \times 10^{-5} \mathrm{~N} \mathrm{~m}$ Accept $T<0$	2	
(d) (Moment of) inertia would increase and then one from the following: greater time to stop/ α would decrease/ speed (of rotation) would be less	(1) (1)	Must have 'I increases' or equivalent for $1^{\text {st }}$ mark. More mass at a distance implies this. Incorrect statement about I or no statement, (0) marks Any mention of angular momentum - zero for $2^{\text {nd }}$ mark	2	

Sample answer and mark allocation		Notes	Margin	
3. (a) (i) $\omega=2 \pi f$ $\begin{aligned} & =2 \times \pi \times 33=210 \\ \boldsymbol{y} & =\boldsymbol{A} \sin \boldsymbol{\omega} \text { or } \boldsymbol{y}=\boldsymbol{A} \boldsymbol{\operatorname { c o s }} \boldsymbol{\omega} \boldsymbol{t} \\ y & =2 \cdot 1 \times 10^{-3} \sin 210 t \end{aligned}$	$\begin{aligned} & (1 / 2) \\ & (1 / 2) \\ & (1 / 2) \\ & (1 / 2) \end{aligned}$	Ignore - ve signs. equation can be implied with incorrect "A". Accept $207 t$ also $66 \pi t$ Wrong "A" max (11/2)	2	10
$\text { (ii) } \begin{align*} v_{\max } & = \pm \omega A \\ v_{\max } & = \pm 210 \times 2 \cdot 1 \times 10^{-3} \tag{1/2}\\ v_{\max } & = \pm 0.44 \mathrm{~m} \mathrm{~s}^{-1} \end{align*}$	(1/2) (1/2) (1)	$\begin{aligned} & v= \pm \omega \sqrt{A^{2}-y^{2}} \text { with } \\ & \mathrm{y}=0 \end{aligned}$ Accept $0.43 \mathrm{~m} \mathrm{~s}^{-1}$ for $\omega=207$ $\begin{aligned} & \mathrm{v}=0.88 \mathrm{~m} \mathrm{~s}^{-1} \text { for } \\ & \mathrm{A}=4.2 \times 10^{-3} \end{aligned}$	2	

Sample answer and mark allocation		Notes	Margin	
5. (a) $F=q \vee B$ $\begin{align*} & \text { (1) Data } \tag{1/2}\\ & 5 \times 10^{-11}=3 \cdot 2 \times 10^{-19} \times v \times 6 \cdot 8 \\ & \left(v=2 \cdot 3 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1}\right) \end{align*}$	(1/2)	"SHOW" question Must start with equation (1) data mark for charge of alpha particle. If q wrong, $\max (1 / 2)$ Deduct $1 / 2$ if unit incorrect	2	10
(b) $\begin{aligned} & v=\frac{E}{B} \\ & 2.3 \times 10^{7}=\frac{E}{6 \cdot 8} \\ & E=1.6 \times 10^{8} \mathrm{~V} \mathrm{~m}^{-1} \end{aligned}$ Or $\begin{aligned} & E=\frac{F}{q} \\ & E=\frac{5 \cdot 0 \times 10^{-11}}{3 \cdot 2 \times 10^{-19}} \\ & E=1 \cdot 6 \times 10^{8} \mathrm{~N} \mathrm{C}^{-1} \end{aligned}$	(1/2) (1/2) (1) (1/2) (1/2) (1)	Must use $\mathrm{v}=2.3 \times 10^{7}$ or unrounded equivalent from part (a) Allow wrong value of q to be carried through from part (a) without penalty	2	

Sample answer and mark allocation		Notes	Margin	
(c) $\quad F=\frac{m v^{2}}{r}$ (1/2) data $\begin{aligned} & 5.0 \times 10^{-11}=\frac{6.645 \times 10^{-27} \times\left(2.3 \times 10^{7}\right)^{2}}{r} \\ & r=0.070(\mathrm{~m}) \end{aligned}$ alpha particle hits at position $B / 0 \cdot 14 \mathrm{~m}$	(1/2) sub (1/2) (1/2) (1)	Can use $r=\frac{m v}{q B} \text { or } d=\frac{2 m v}{q B}$ Data ($1 / 2$) mark If answer is $0.070(\mathrm{~m})$ then lose (1) mark for not stating B	3	
(d) Electron will be deflected in the opposite direction Due to opposite charge Radius of semicircle smaller Due to (much) smaller mass or greater $\frac{q}{m}$	(1/2) (1) (1/2) (1)	Explanatory (1) mark only given if path statement $(1 / 2)$ is awarded Decrease in q is less significant so no mark available for this change in q. If mention ' F is constant' then (0) for last mark	3	

Sample answer and mark allocation		Notes	Margin	
6. (a) (i)		($1 / 2$) for origin ($1 / 2$) for shape ($1 / 2$) for all labels ($\mathrm{t}, \mathrm{I}, \mathrm{A}$) ($1 / 2$) for $0 \cdot 1(\mathrm{~A})$ If shape wrong: max of ($1 / 2$) for $0 \cdot 1(\mathrm{~A})$ No need for unit on t axis	2	13
(ii) Max voltage is 3 V or Back emf too small	(1)	Any implication of V not big enough. "voltage through" (0)	1	
(iii) Magnetic field collapse/falls quickly Large (back) emf (110 V produced)	(1) (1)	Not large $\frac{d I}{d t}$ statement alone Independent marks	2	
(iv) $\begin{aligned} E & =P t \\ & =1 \cdot 2 \times 10^{-3} \times 0.25 \\ & =3 \times 10^{-4}(\mathrm{~J}) \end{aligned}$	$\begin{aligned} & (1 / 2) \\ & (1 / 2) \end{aligned}$	Watch for $E=I t V, V=110 \mathrm{~V}$ gives $E=2.75 \mathrm{~J}$. WP -(0)		
$\begin{aligned} & E=\quad 1 / 2 L I^{2} \\ & 3 \times 10^{-4}=1 / 2 \times L \times 0.1^{2} \\ & L=0.060 \mathrm{H} \end{aligned}$	$\begin{aligned} & (1 / 2) \\ & (1 / 2) \\ & (1) \end{aligned}$	gives $\mathrm{L}=550 \mathrm{H}(2 \mathrm{marks})$	3	

| Sample answer and mark allocation | | Notes | Margin |
| :--- | :--- | :--- | :--- | :--- |
| (b) (i) \quadVoltmeter is to monitor (supply) voltage/
 voltage across inductor remains constant | (1) | Any statement regarding
 maintaining a constant V. | 1 |

Sample answer and mark allocation		Notes Alternative: $F=k \frac{Q_{1} Q_{2}}{r^{2}}=\frac{m v^{2}}{r}$ to find v, then $L=m v r$	Margin	
7. (a) (i) $\begin{aligned} L & =\frac{n h}{2 \pi} \\ & =\frac{1 \times 6 \cdot 63 \times 10^{-34}}{2 \pi} \\ L & =1.06 \times 10^{-34} \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-1} \begin{array}{l} \text { or kg m} \\ \text { or J s } \end{array} \end{aligned}$	(1/2) (1/2) (1)		2	8
(ii) $\begin{aligned} m v & =\frac{n h}{2 \pi r} \\ m v & =\frac{1 \times 6.63 \times 10^{-34}}{5 \cdot 3 \times 10^{-11} \times 2 \pi} \\ m v & =2.0 \times 10^{-24} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$ OR $\begin{aligned} m v & =\frac{L}{r} \\ m v & =\frac{1 \cdot 06 \times 10^{-34}}{5 \cdot 3 \times 10^{-11}} \\ m v & =2.0 \times 10^{-24} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	(1/2) (1/2) (1) (1/2) (1/2) (1)	Care with penalising rounding through question Accept $2 \cdot 1 \times 10^{-24}$	2	
(iii) $\begin{aligned} & \lambda=\frac{h}{p} \\ & =\frac{6 \cdot 63 \times 10^{-34}}{2 \cdot 0 \times 10^{-24}} \\ & =3 \cdot 3 \times 10^{-10} \mathrm{~m} \end{aligned}$	(1/2) (1/2) (1)	Accept $3 \cdot 2 \times 10^{-10}$	2	
(b) (i) The electrons would (spiral) inwards towards the nucleus. or Orbit decays / decreases	(1)	Do not accept implying energy levels or jumps. Not "collapses".	1	
(ii) Quantum mechanics.	(1)	Not quantum physics.	1	

Sample answer and mark allocation		Notes	Margin	
8. (a) $\begin{aligned} & B=\frac{\mu_{0} I}{2 \pi r} \\ & 1.7 \times 10^{-7}=\frac{4 \times \pi \times 10^{-7} \times I}{2 \times \pi \times 0.25} \end{aligned}$ $I=0.21 \mathrm{~A}$	(1/2) (1/2) (1)	substitution $(1 / 2)$ is for all values, no data value. Watch for acceptable cancellation of π before substitution. If left as μ_{0}, then cannot get subst. ($1 / 2$) if final answer incorrect.	2	5
(b) One tesla is the magnetic induction of a magnetic field in which a conductor of length one metre, carrying a current of one ampere (perpendicular) to the field is acted on by a force of one newton. (Content statement 2.2.4)	(1)	Must be in words and numbers. Cannot use equation with only letters eg $B=F / I l$	1	
(c) $F=B I l$ $\begin{aligned} F / l & =1.7 \times 10^{-7} \times 2 \\ & =3.4 \times 10^{-7} \mathrm{~N}\left(\mathrm{~m}^{-1}\right) \end{aligned}$ or $\begin{aligned} F / l & =\frac{\mu_{0} I_{1} I_{2}}{2 \pi r} \\ & =\frac{4 \times \pi \times 10^{-7} \times 0.21 \times 2}{2 \times \pi \times 0.25} \\ & =3.4 \times 10^{-7} \mathrm{~N}\left(\mathrm{~m}^{-1}\right) \end{aligned}$	(1/2) (1/2) (1) (1/2) (1/2) (1)	$F=$ BIlsin θ not acceptable unless $\sin \theta=1$ If $I=0.21 \mathrm{~A}$ used in first method, then WP max $(1 / 2)$	2	

Sample answer and mark allocation			Notes This could be shown by a diagram. Second mark dependent on first mark being correct. Any argument implying standing waves, (0) marks	Margin	
(b) (i)	Light is reflected from both surfaces of the soap film. The two (reflected) waves meet out of phase (by π or $\lambda / 2$).	(1) (1)		2	
	$\begin{aligned} \text { opd. } \quad & =2 \times \text { thickness } \times n \\ & =2 \times 4.00 \times 10^{-6} \times 1.45 \\ & =1.16 \times 10^{-5} \mathrm{~m} \end{aligned}$	(1/2) $(1 / 2)$ (1)	$11 \cdot 6 \mu \mathrm{~m}$	2	
(iii)	The next point giving destructive interference must have:an optical path difference of one λ more than that at X. $\begin{aligned} \text { New opd } & =1 \cdot 16 \times 10^{-5}+580 \times 10^{-9} \\ & =1.22 \times 10^{-5} \mathrm{~m} \end{aligned}$	(1) (1/2) $(1 / 2)$	Evidence of adding one wavelength on to any figure is equivalent to first mark. $20 \lambda \rightarrow 21 \lambda$ $12 \cdot 2 \mu \mathrm{~m}$	2	

Sample answer and mark allocation			Notes "Nodes/antinodes" or "superposition" imply interference. Not "combine". Not "bounce", "rebound" etc	Margin	
10. (a)	A stationary wave is caused by interference effects between the incident and reflected sound.	$(1 / 2)$ $(1 / 2)$		1	7
	The antinodes of the pattern are areas of maximum displacement/amplitude/disturbance The nodes of the pattern are areas of minimum/zero displacement/amplitude/disturbance	$(1 / 2)$ $(1 / 2)$	Diagram alone (0) marks	1	
(c)	The beads accumulate at the nodes the vibrations at the antinodes pushes them to side.	(1) (1)	"Fresh start". No carry through of wrong definitions of nodes/antinodes.	2	
	$\begin{aligned} \lambda & =2 \times 85 \times 10^{-3} \\ & =170 \times 10^{-3}(\mathrm{~m}) \\ v & =f \lambda \\ & =1950 \times 170 \times 10^{-3} \\ v & =330 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	(1/2) (1/2) (1/2) (1/2) (1)	Accept $332 \mathrm{~m} \mathrm{~s}^{-1}$ $331 \mathrm{~m} \mathrm{~s}^{-1}$ rounding error. If $\lambda=85 \times 10^{-3} \mathrm{~m}, \max ^{1 / 2}$	3	

[END OF MARKING INSTRUCTIONS]

