2008 Physics

Advanced Higher

Finalised Marking Instructions

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from the Assessment Materials Team, Dalkeith.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's Assessment Materials Team at Dalkeith may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Detailed Marking Instructions - AH Physics 2008

1. Numerical Marking

(a) The fine divisions of marks shown in the marking scheme may be recorded within the body of the script beside the candidate's answer. If such marks are shown they must total to the mark in the inner margin.
(b) Negative marks or marks to be subtracted should not be shown. An inverted vee may be used instead.
(c) The number recorded should always be the marks being awarded. The number out of which a mark is scored SHOULD NEVER BE SHOWN AS A DENOMINATOR. ($1 / 2$ mark will always mean one half mark and never 1 out of 2.)
(d) Where square ruled paper is enclosed inside answer books it should be clearly indicated that this item has been considered. Marks awarded should be transferred to the script booklet inner margin and marked G.
(e) Fractional marks, if awarded to individual questions, should be recorded in the grid, but the total script mark must be rounded up to the next whole number when transferred to the box at the top of the script.
2. Other Marking Symbols which may be used

TICK	-	Correct point as detailed in scheme, includes data entry. Any part of answer which is wrong. (For a block of wrong answer indicate zero marks.)
SCORE THROUGH	-	A point omitted which has led to a loss of marks.
INVERTED VEE	-	Under an answer worth marks which is wrong only because a wrong answer has been carried forward from a previous part.
WAVY LINE		Reference to a graph on separate paper. You MUST show a mark on the graph paper and the SAME mark on the script.
"G"	-	Wrong Physics
"X"	-	Wrong order of marks

3. Marking Symbols which may not be used.
"WP" - Marks not awarded because an apparently correct answer was due to the use of "wrong physics".
"ARITH" - Candidate has made an arithmetic mistake. (Can indicate by line through number).
"SIG FIGS or SF" - Candidate has made a mistake in the number of significant figures for a final answer.
(Can be indicated by a line through additional figures).

4. General Instructions (Refer to National Qualifications Booklet)

(a) No marks are allowed for a description of the wrong experiment or one which would not work. Full marks should be given for information conveyed correctly by a sketch.
(b) Surplus answers: where a number of reasons, examples etc are asked for and a candidate gives more than the required number then wrong answers may be treated as negative and cancel out part of the previous answer.
(c) Full marks should be given for a correct answer to a numerical problem even if the steps are not shown explicitly. The part marks shown in the scheme are for use in marking partially correct answers.
However, when the numerical answer is given or a derivation of a formula is required every step must be shown explicitly.
(d) Where 1 mark is shown for the final answer to a numerical problem $1 / 2$ mark may be deducted for an incorrect unit.
(e) Where a final answer to a numerical problem is given in the form 3^{-6} instead of 3×10^{-6} then deduct $1 / 2$ mark.
(f) Deduct $1 / 2$ mark if an answer is wrong because of an arithmetic slip.
(g) No marks should be awarded in a part question after the application of a wrong physics principle (wrong formula, wrong substitution) unless specifically allowed for in the marking scheme.
(h) In certain situations, a wrong answer to a part of a question can be carried forward within that part of the question. This would incur no further penalty provided that it is used correctly. Such situations are indicated by a horizontal dotted line in the marking instructions.

Wrong answers can always be carried forward to the next part of a question, over a solid line without penalty.
The exceptions to this are:

- where the numerical answer is given
- where the required equation is given.
(i) $1 / 2$ mark should be awarded for selecting a formula.
(j) Where a triangle type "relationship" is written down and then not used or used incorrectly then any partial $1 / 2$ mark for a formula should not be awarded.
(k) In numerical calculations, if the correct answer is given then converted wrongly in the last line to another multiple/submultiple of the correct unit then deduct $1 / 2$ mark.
(1) Significant figures.

Data in question is given to 3 significant figures.
Correct final answer is $8 \cdot 16 \mathrm{~J}$.
Final answer $8 \cdot 2 \mathrm{~J}$ or $8 \cdot 158 \mathrm{~J}$ or $8 \cdot 1576 \mathrm{~J}$ - No penalty.
Final answer 8 J or $8 \cdot 15761 \mathrm{~J}$ - Deduct $1 / 2$ mark.
Candidates should be penalised for a final answer that includes:

- three or more figures too many
or
- two or more figures too few. ie accept two higher and one lower.
Max $1 / 2$ mark deduction per question. Max $21 / 2$ deduction from question paper.
(m) Squaring Error

$$
\begin{aligned}
& E_{K}=1 / 2 m v^{2}=1 / 2 \times 4 \times 2^{2}=4 \mathrm{~J} \quad(-1 / 2, \text { ARITH }) \\
& E_{K}=1 / 2 m v^{2}=1 / 2 \times 4 \times 2=4 \mathrm{~J} \quad(1 / 2, \text { formula }) \text {. Incorrect substitution. }
\end{aligned}
$$

The General Marking Instructions booklet should be brought to the markers' meeting.

Physics - Marking Issues

The current in a resistor is 1.5 amperes when the potential difference across it is 7.5 volts. Calculate the resistance of the resistor.

	Answers	Mark + comment	Issue
1.	$\mathrm{V}=\mathrm{IR}$	(1/2)	Ideal Answer
	$7 \cdot 5=1 \cdot 5 \mathrm{R}$	(1/2)	
	$\mathrm{R}=5 \cdot 0 \Omega$	(1)	
2.	$5 \cdot 0 \Omega$	(2) Correct Answer	GMI 1
3.	$5 \cdot 0$	(112) Unit missing	GMI 2(a)
4.	$4 \cdot 0 \Omega$	(0) No evidence/Wrong Answer	GMI 1
5.	Ω	(0) No final answer	GMI 1
6.	$\mathrm{R}=\frac{V}{I}=\frac{7 \cdot 5}{1 \cdot 5}=4 \cdot 0 \Omega$	(11/2) Arithmetic error	GMI 7
7.	$\mathrm{R}=\frac{V}{I}=4 \cdot 0 \Omega$	(1/2) Formula only	GMI 4 and 1
8.	$\mathrm{R}=\frac{V}{I}=$ \qquad	(1/2) Formula only	GMI 4 and 1
9.	$\mathrm{R}=\frac{V}{I}=\frac{7 \cdot 5}{1 \cdot 5}=$ \qquad	(1) Formula + subs/No final answer	GMI 4 and 1
10.	$\mathrm{R}=\frac{V}{I}=\frac{7 \cdot 5}{1 \cdot 5}=4 \cdot 0$	(1) Formula + substitution	GMI 2(a) and 7
11.	$\mathrm{R}=\frac{V}{I}=\frac{1 \cdot 5}{7 \cdot 5}=5 \cdot 0 \Omega$	(1/2) Formula but wrong substitution	GMI 5
12.	$\mathrm{R}=\frac{V}{I}=\frac{75}{1.5}=5.0 \Omega$	(1/2) Formula but wrong substitution	GMI 5
13.	$\mathrm{R}=\frac{I}{V}=\frac{7 \cdot 5}{1 \cdot 5}=5 \cdot 0 \Omega$	(0) Wrong formula	GMI 5
14.	$\begin{aligned} & \mathrm{V}=\mathrm{IR} \quad 7 \cdot 5=1 \cdot 5 \times \mathrm{R} \\ & \mathrm{R}=0 \cdot 2 \Omega \end{aligned}$	($11 / 2$) Arithmetic error	GMI 7
15.	$V=I R$		
	$\mathrm{R}=\frac{I}{V}=\frac{1 \cdot 5}{7 \cdot 5}=0 \cdot 2 \Omega$	(1/2) Formula only	GMI 20

Data Sheet

Common Physical Quantities

Quantity	Symbol	Value	Quantity	Symbol	Value
Gravitational acceleration on Earth		$9.8 \mathrm{~ms}^{-2}$	Mass of electron		
Radius of Earth	R_{E}	$6.4 \times 10^{6} \mathrm{~m}$	Charge on electron	${ }_{e}$	$-1.60 \times 10^{-19} \mathrm{C}$
Mass of Earth	M_{E}	$6.0 \times 10^{24} \mathrm{~kg}$	Mass of neutron	m_{n}	$1.675 \times 10^{-27} \mathrm{~kg}$
Mass of Moon	M_{M}	$7.3 \times 10^{22} \mathrm{~kg}$	Mass of proton	m_{p}	$1.673 \times 10^{-27} \mathrm{~kg}$
Radius of Moon Mean Radius of	R_{M}	$1.7 \times 10^{6} \mathrm{~m}$	Mass of alpha particle	m_{∞}	
Moon Orbit		$3.84 \times 10^{8} \mathrm{~m}$	Charge on alpha		$6.645 \times 10^{-2} \mathrm{~kg}$
Universal constant			particle		$3.20 \times 10^{-19} \mathrm{C}$
of gravitation	G	$6.67 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$	Planck's constant	h	$6 \cdot 63 \times 10^{-34} \mathrm{Js}$
Speed of light in vacuum	c	$3.0 \times 10^{8} \mathrm{~ms}^{-1}$	Permittivity of free space	ε_{0}	$8.85 \times 10^{-12} \mathrm{Fm}^{-1}$
Speed of sound in air	v	$3.4 \times 10^{2} \mathrm{~ms}^{-1}$	Permeability of free space	μ_{0}	$4 \pi \times 10^{-7} \mathrm{Hm}^{-1}$

Refractive Indices

The refractive indices refer to sodium light of wavelength 589 nm and to substances at a temperature of 273 K .

Substance	Refractive index	Substance	Refractive index
Diamond	2.42	Glycerol	1.47
Glass	1.51	Water	1.33
Ice	1.31	Air	1.00
Perspex	1.49	Magnesium Fluoride	1.38

Spectral Lines

Element	Wavelength/nm	Colour	Element	Wavelength/nm	Colour
Hydrogen	$\begin{aligned} & 656 \\ & 486 \\ & 434 \end{aligned}$	Red Blue-green Blue-violet	Cadmium	$\begin{aligned} & \hline 644 \\ & 509 \\ & 480 \end{aligned}$	Red Green Blue
	410	Violet	Lasers		
	$\begin{aligned} & 397 \\ & 389 \end{aligned}$	Ultraviolet Ultraviolet	Element	Wavelength/nm	Colour
Sodium	589	Yellow	Carbon dioxide Helium-neon	$\left.\begin{array}{c}9550 \\ 10590 \\ 633\end{array}\right\}$	Infrared Red

Properties of selected Materials

Substance	$\begin{aligned} & \text { Density/ } \\ & \mathrm{kg} \mathrm{~m}^{-3} \end{aligned}$	Melting Point/K	Boiling Point/K	Specific Heat Capacity/ $J_{k g}{ }^{-1} K^{-1}$	Specific Latent Heat of Fusion/ Jkg ${ }^{-1}$	Specific latent Heat of Vaporisation/ Jkg^{-1}
Aluminium	$2 \cdot 70 \times 10^{3}$	933	2623	9.02×10^{2}	3.95×10^{5}	
Copper	8.96×10^{3}	1357	2853	3.86×10^{2}	2.05×10^{5}	\ldots
Glass	2.60×10^{3}	1400	6.70×10^{2}		
Ice	9.20×10^{2}	273	$2 \cdot 10 \times 10^{3}$	3.34×10^{5}	
Gylcerol	1.26×10^{3}	291	563	2.43×10^{3}	1.81×10^{5}	8.30×10^{5}
Methanol	7.91×10^{2}	175	338	2.52×10^{3}	9.9×10^{4}	$1 \cdot 12 \times 10^{6}$
Sea Water	1.02×10^{3}	264	377	3.93×10^{3}		
Water	1.00×10^{3}	273	373	4.19×10^{3}	$3 \cdot 34 \times 10^{5}$	2.26×10^{6}
Air	$1 \cdot 29$					
Hydrogen	9.0×10^{-2}	14	20	1.43×10^{4}	\ldots	4.50×10^{5}
Nitrogen	$1 \cdot 25$	63	77	1.04×10^{3}	\ldots	2.00×10^{5}
Oxygen	$1 \cdot 43$	55	90	9.18×10^{2}	\ldots	2.40×10^{5}

The gas densities refer to a temperature of 273 K and pressure of $1.01 \times 10^{5} \mathrm{~Pa}$.

2008 AH Physics				
Sample answer and mark allocation		Notes		
1. (a) (i) $\begin{aligned} \alpha & =\frac{\omega-\omega_{0}}{\mathrm{t}} \\ & =\frac{1200-0}{4} \\ & =300 \mathrm{rad} \mathrm{~s}^{-2} \end{aligned}$	(1/2) (1/2) (1)		2	12
$\text { (ii) } \quad \begin{aligned} \tau & =\mathrm{I} \alpha \\ & =5.1 \times 10^{-4} \times 300 \\ & =0.15 \mathrm{Nm} \end{aligned}$	(1/2) (1/2) (1)		2	
$\text { (iii) } \begin{aligned} \theta & =\omega_{0} \mathrm{t}+1 / 2 \alpha \mathrm{t}^{2} \\ & =0+0.5 \times 300 \times 4^{2} \\ & =2400(\mathrm{rad}) \\ \text { revolutions } & =\frac{2400}{2 \pi} \\ & =380 \end{aligned}$	(1/2) (1/2) (1/2) (1/2) (1)	If use $s=u t+1 / 2 t^{2} \quad(0)$ (ie uses standard symbols for linear motion) Could also use $\omega^{2}=\omega_{0}{ }^{2}+2 \alpha \theta$	3	
(b) (i) $\begin{aligned} \mathrm{F} & =\mathrm{m} \omega^{2} \mathrm{r} \\ & =5.3 \times 10^{-6} \times(1200)^{2} \times\left(85 \times 10^{-3}\right) \\ & =0.65 \mathrm{~N} \end{aligned}$	(1/2) (1/2) (1)		2	
(ii) (the force from) the glass/(end of) tube	(1)	Friction 0 Any argument around 'centrifugal' 0	1	

Sample answer and mark allocation	Notes		Margin	
(c) \quad increase	(1)	If I decreases then (0)		
	r increases (unless accompanied by wrong physics)	(1)	Must state I increases before second mark becomes available	2

Sample answer and mark allocation	Notes	Margin	
2. (a) $\begin{aligned} (\mathrm{m}) \mathrm{g} & =\frac{\mathrm{GM}(\mathrm{~m})}{\mathrm{R}^{2}} \\ \mathrm{R}^{2} & =\frac{6 \cdot 67 \times 10^{-11} \times 6 \cdot 4 \times 10^{23}}{3 \cdot 7} \\ & =1.15 \times 10^{13} \\ \mathrm{R} & =\sqrt{1 \cdot 15 \times 10^{13}} \\ & =3 \cdot 4 \times 10^{6} \mathrm{~m} \\ & (3400 \mathrm{~km}) \end{aligned}$	This mark is for equating 2 correct expressions. If not present (0) for question. Substitution $1 / 2$ is for the square root	2	11
(b) (i) $\begin{align*} & \frac{\mathrm{GMm}}{\mathrm{R}^{2}}=m \omega^{2} \mathrm{R} \tag{1/2}\\ & \frac{\mathrm{GM}}{\mathrm{R}^{2}}=\omega^{2} \mathrm{R} \\ & \omega^{2}=\frac{\mathrm{GM}}{\mathrm{R}^{3}} \\ & \left(\omega=\sqrt{\frac{\mathrm{GM}}{\mathrm{R}^{3}}}\right) \end{align*}$	OR $\frac{\overline{\mathrm{GMm}}}{\mathrm{R}^{2}}=\frac{m v^{2}}{R}(1 / 2)+(1 / 2)$ for cancelling m for rearranging these two operations can be done in one step	2	
(ii) $\begin{aligned} \omega & =\sqrt{\frac{\mathrm{GM}}{\mathrm{R}^{3}}} \\ & =\sqrt{\frac{6 \cdot 67 \times 10^{-11} \times 6 \cdot 4 \times 10^{23}}{\left(3 \cdot 4 \times 10^{6}+1 \cdot 7 \times 10^{7}\right)^{3}}} \\ & =\sqrt{5 \times 10^{-9}} \\ & =7 \cdot 1 \times 10^{-5} \mathrm{rads}^{-1} \end{aligned}$	for $6 \cdot 67 \times 10^{-11}$ for adding (independent) If 9.3×10^{-5} then only data $(1 / 2)$ available	2	
(iii) $\begin{aligned} \mathrm{T} & =\frac{2 \pi}{\omega} \\ & =\frac{2 \times 3 \cdot 14}{7 \cdot 1 \times 10^{-5}} \\ & =8.9 \times 10^{4} \mathrm{~s} \end{aligned}$	Ok to use radius of planet if using $\mathrm{v}=\mathrm{r} \omega$ and $\mathrm{T}=\frac{2 \pi \mathrm{r}}{\mathrm{v}}$ need both for ($1 / 2$) Care with rounding. (or 24.6 h)	2	

Sample answer and mark allocation		Notes Accept $3.0 \times 10^{\mathrm{x}}$ or if $\frac{R^{3}}{T^{2}}$ accept $3.3 \times 10^{\mathrm{x}}$	Margin	
(c) $(1 / 2) \quad \frac{\mathrm{T}^{2}}{\mathrm{R}^{3}}=3.05 \times 10^{-7}$ $\begin{aligned} & \frac{\mathrm{T}^{2}}{\mathrm{R}^{3}}=3.02 \times 10^{-7} \\ & \frac{\mathrm{~T}^{2}}{\mathrm{R}^{3}}=3.03 \times 10^{-7} \end{aligned}$ statement $\frac{\mathrm{T}^{2}}{\mathrm{R}^{3}}=$ constant or draw graph of plot graph statement - straight line through origin	(1/2) (1/2) (1/2) (1) (2) (1)	Accept $3.0 \times 10^{\mathrm{x}}$ or if $\frac{R^{3}}{T^{2}}$ accept 3.3×10^{x} Must be on graph paper ($1 / 2$) axes (must have correct units plus labels) ($1 / 2$) each point Mark for statement dependent upon correctly drawn graph.	3	

Sample answer and mark allocation	Notes	Margin	
5. (a) (i)	$1 / 2$ for shape $1 / 2$ for direction wrong shape (0)	1	7
(ii) $\begin{align*} & \mathrm{V}=\frac{\mathrm{Q}}{4 \pi \varepsilon_{0} \mathrm{r}} \tag{1/2}\\ & \mathrm{~V}_{\mathrm{X}}=\mathrm{V}_{\mathrm{Q} 1}+\mathrm{V}_{\mathrm{Q} 2} \end{align*}$ $\therefore \mathrm{V}_{\mathrm{X}}=\frac{-4 \times 10^{-6}}{4 \times \pi \times 8 \cdot 85 \times 10^{-12} \times 0 \cdot 3}+\frac{-4 \times 10^{-6}}{4 \times \pi \times 8 \cdot 85 \times 10}$ $\begin{equation*} \mathrm{V}_{\mathrm{X}}=-2.4 \times 10^{5} \mathrm{~V} \tag{1} \end{equation*}$	no negative $1 / 2$ only for equation as counts as wrong substitution $2 \times 0 \cdot 3^{(1 / 2)}$	2	
(b) (i) $\begin{equation*} \mathrm{F}=\frac{\mathrm{Qq}}{4 \pi \varepsilon_{0} \mathrm{r}^{2}} \tag{1/2} \end{equation*}$ ($1 / 2$ substitution) $\mathrm{F}=\frac{-8 \times 10^{-6} \times-4 \times 10^{-6}}{4 \times \pi \times \underset{(1 / 2)}{8 \cdot 85 \times 10^{-12} \times 0 \cdot 5^{2}}=1 \cdot 2 \mathrm{~N}, \text { (1/2) }}=1$	Substitution must contain all numerical values. Must state value of ε_{0} (9×10^{9} ok) calculation gives $1 \cdot 15 \mathrm{~N}$	2	

Sample answer and mark allocation	Notes	Mar
(ii) $\underline{\theta}=\mathbf{3 7}^{\circ} \text { or } \mathbf{5 3}^{\circ} \text { consistent with diagram }$ EITHER Scale Diagram OR $\begin{equation*} \mathrm{F}=2 \times 1.2 \cos 37^{\circ}=1.9 \mathrm{~N} \tag{1} \end{equation*}$ Direction (000°) (independent) North ok	Accept $36 \cdot 9^{\circ}$ Can work out by scale diagram and trigonometry Accept 1.15 N (carry forward) (1 for magnitude) ($1 / 2$ for angle/direction) Accept "upwards"	2

Sample answer and mark allocation		Notes Accept a changing magnetic field generates a back emf	Margin	
7. (a) (i) A changing/increasing current ($1 / 2$) in the inductor generates a back emf. (1/2)			1	13
(ii) $\begin{aligned} & I=\frac{V}{R} \\ & I=\frac{12}{15} \\ & I=0 \cdot 80 \mathrm{~A} \end{aligned}$	(1/2) (1/2) (1)		2	
$\text { (iii) } \begin{aligned} \mathrm{E} & =\frac{1}{2} \mathrm{LI}^{2} \\ \mathrm{E} & =\frac{1}{2} \times 0 \cdot 80 \times 0 \cdot 80^{2} \\ \mathrm{E} & =0 \cdot 26 \mathrm{~J} \end{aligned}$	(1/2) (1/2) (1)		2	
(iv) $\begin{aligned} & \mathrm{V}=\mathrm{IR}=0 \cdot 12 \times 15 \\ & \mathrm{~V}=1 \cdot 8(\mathrm{~V}) \end{aligned}$ Back emf, E is emf across the inductor $=(-) 10 \cdot 2(\mathrm{~V})$ $\begin{aligned} & \mathrm{E}=-\mathrm{L} \frac{\mathrm{dI}}{\mathrm{dt}} \\ & \frac{\mathrm{dI}}{\mathrm{dt}}=\frac{\mathrm{E}}{-\mathrm{L}}=\frac{-10 \cdot 2}{-0 \cdot 8}=13 \mathrm{As}^{-1} \end{aligned}$ ($1 / 2$) for substitution	(1/2) (1/2) (1/2) (1)	(independent) (independent) Accept 12•8, 12•75	3	

Sample answer and mark allocation		Notes	Margin	
(b) (i)	Maximum current unchanged		1	
(ii)	The time delay is decreased or the time to reach maximum current is reduced (1), because the inductance is decreased (by removing the iron core).(1) OR back emf is reduced	Time delay increased (0) First mark independent	2	
(iii)	I is the same (1/2) but L is smaller ($1 / 2)$.		1	
(c)			1	

Sample answer and mark allocation	Notes	Margin	
8.	No marks for units If F_{E} or F_{G} is incorrect due to wrong physics then cannot award final mark. Must show that $\mathrm{F}_{\mathrm{G}} \ll \mathrm{F}_{\mathrm{E}}$	4	13
(ii) Strong force only acts at a range of approx. $10^{-14} \mathrm{~m}$. OR The distance between these 2 protons is too large.		1	
(b) $\begin{align*} & \mathrm{E}_{\mathrm{K}}=\mathrm{E}_{\mathrm{P}} \\ & \therefore \frac{1}{2} \mathrm{mv}^{2}=\frac{\mathrm{Qq}}{4 \pi \varepsilon_{0} \mathrm{r}_{\mathrm{c}}} \tag{1/2}\\ & \mathrm{v}^{2}=\frac{2 \mathrm{Qq}}{4 \pi \varepsilon_{0} \mathrm{mr}_{\mathrm{c}}} \tag{1/2}\\ & \mathrm{v}=\sqrt{\frac{\mathrm{Qq}}{2 \pi \varepsilon_{0} \mathrm{mr}_{\mathrm{c}}}} \end{align*}$	($1 / 2$) for equating depends on both expressions being correct	2	

Sample answer and mark allocation	Notes	Ma
(c) $\begin{align*} & \begin{array}{l} \text { (i) }=\sqrt{\frac{\mathrm{qQ}}{2 \pi \varepsilon_{0} \mathrm{mr}_{\mathrm{c}}}} \\ 9 \cdot 63 \times 10^{6}=\sqrt{\frac{(1 / 2) \quad(1 / 2) \text { substitutic }}{2 \times \pi \times 8 \cdot 85 \times 10^{-12} \times 6 \cdot 645 \times 10^{-27} \times 1 \cdot 12 \times 10^{-13}}} \\ (1 / 2) \quad 2 \times 1 / 2) \end{array} \\ & \therefore 9 \cdot 27 \times 10^{13}=\frac{2 \times 1 \cdot 6 \times 10^{-19} \times \mathrm{Q}}{2 \times \pi \times 8 \cdot 85 \times 10^{-12} \times 6 \cdot 645 \times 10^{-27} \times 1 \cdot 12 \times 10^{-13}} \\ & \mathrm{Q}=\frac{9 \cdot 27 \times 10^{13} \times 2 \times \pi \times 8.85 \times 10^{-12} \times 6 \cdot 645 \times 10^{-27} \times 1 \cdot 12 \times 10^{-13}}{2 \times 1 \cdot 6 \times 10^{-19}} \\ & \mathrm{Q}=1 \cdot 2 \times 10^{-17} \mathrm{C} \quad \text { (1) } \end{align*}$	$3 \times(1 / 2)$ data marks	3
(ii) Number of protons in the nucleus is given by: $\mathrm{N}=\frac{\mathrm{Q}}{\mathrm{e}}$ (1/2) ($1 / 2$) $\frac{1 \cdot 2 \times 10^{-17}}{1 \cdot 6 \times 10^{-19}}=75$ (1) (1 for value of $\mathrm{Q}, 1 / 2$ for formula, $1 / 2$ for answer)	Accept $75 \cdot 5$ (rounds to 76) Allow rounding up or down regardless of the figure in the first decimal place	2
(iii) It is a Rhenium nucleus (atomic number 75) (1) Must be consistent with part (ii)	Accept osmium if 76 above	1

Sample answer and mark allocation			Notes	Margin	
$\begin{array}{lll} 9 & \text { (a) } & \text { (i) } \end{array}$	frequency increased (with moving observer) Driver passing through more (than 1250) wavefronts in $\underline{1 \text { second }}$	(1) (1)		2	6
(ii)	$\begin{aligned} \mathrm{f} & =\mathrm{f} \underline{\mathrm{~s}}\left(\frac{v+v o}{v}\right) \\ & =1250\left(\frac{340+25 \cdot 0}{340}\right) \\ & =1342 \\ & =1340 \mathrm{~Hz} \end{aligned}$	(1/2) (1/2) (1)	1341 is incorrect rounding	2	

\left.	Sample answer and mark allocation	Notes	Margin
(b) moving away			
wavelength increased			
OR frequency decreased			$\right\} \quad$ (1)
:---			

Sample answer and mark allocation		Notes	Margin	
(b) $\begin{aligned} & \mu_{\text {violet }}=0.745=\tan i_{\text {pviolet }} \\ & i_{\text {pviolet }}=\tan ^{-1} 0 \cdot 745=36.7^{\circ} \end{aligned}$ Difference $=36 \cdot 9-36 \cdot 7=0 \cdot 2^{\circ}$	(1/2) (1/2) (1)	36.6 is incorrect rounding Accept 0.2 to 0.3 must have unit	2	
(c) Intensity changes (1) In a cyclic fashion (1)		Colours disappear at different angles (1)	2	

Sample answer and mark allocation				Notes	Margin	
11. (a)	Divi	n of wavefront	(1)		1	6
	Δx d	$\begin{aligned} & =\frac{\lambda \mathrm{D}}{\mathrm{~d}} \\ & =\frac{\lambda \mathrm{D}}{\Delta x} \\ & =\frac{633 \times 10^{-9} \times 3 \cdot 50}{7 \cdot 2 \times 10^{-3}} \\ & =3 \cdot 1 \times 10^{-4} \mathrm{~m} \end{aligned}$	(1/2) (1/2) (1)		2	
		increased Δx Smaller \% uncertainty in d or Δx	$\begin{aligned} & \text { (1) } \\ & \text { (1) } \end{aligned}$		2	
	(ii)	Fainter fringes OR broader fringes OR Not all fringes seen, screen not enough	(1)	Distorted (0)	1	

[END OF MARKING INSTRUCTIONS]

