

2010 Physics

Intermediate 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2010

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from the External Print Team, Centre Services, Dalkeith.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's External Print Team, Centre Services, at Dalkeith may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Physics – Marking Issues

The current in a resistor is 1.5 amperes when the potential difference across it is 7.5 volts. Calculate the resistance of the resistor.

1.	Answers V = IR $7 \cdot 5 = 1 \cdot 5R$ $R = 5 \cdot 0 \Omega$	Mark + Comment $\binom{1}{2}$ $\binom{1}{2}$ (1)	Issue Ideal answer
2.	5·0 Ω	(2) Correct answer	GMI 1
3.	5.0	(1 ¹ / ₂) Unit missing	GMI 2 (a)
4.	4·0 Ω	(0) No evidence/wrong answer	GMI 1
5.	Ω	(0) No final answer	GMI 1
6.	$R = \frac{V}{I} = \frac{7 \cdot 5}{1 \cdot 5} = 4 \cdot 0 \Omega$	(1 ¹ / ₂) Arithmetic error	GMI 7
7.	$R = \frac{V}{I} = 4.0 \Omega$	(¹ / ₂) Formula only	GMI 4 and 1
8.	$R = \frac{V}{I} = \underline{\qquad} \Omega$	(¹ / ₂) Formula only	GMI 4 and 1
9.	$R = \frac{V}{I} = \frac{7 \cdot 5}{1 \cdot 5} = \underline{\qquad} \Omega$	(1) Formula + subs/No final answer	GMI 4 and 1
10.	$R = \frac{V}{I} = \frac{7.5}{1.5} = 4.0$	(1) Formula + substitution	GMI 2 (a) and 7
11.	$R = \frac{V}{I} = \frac{1.5}{7.5} = 5.0 \Omega$	(¹ / ₂) Formula but wrong substitution	GMI 5
12.	$R = \frac{V}{I} = \frac{75}{1.5} = 5.0 \Omega$	(¹ / ₂) Formula but wrong substitution	GMI 5
13.	$R = \frac{I}{V} = \frac{7.5}{1.5} = 5.0 \Omega$	(0) Wrong formula	GMI 5
14.	$V = IR 7.5 = 1.5 \times R R = 0.2 \ \Omega$	(1 ¹ / ₂) Arithmetic error	GMI 7
15.	$V = IR$ $R = \frac{I}{V} = \frac{1.5}{7.5} = 0.2 \Omega$	(¹ / ₂) Formula only	GMI 20

2010 Physics Intermediate 2

Marking scheme

Section A

1.	Е	11.	В
2.	D	12.	В
3.	В	13.	С
4.	D	14.	А
5.	D	15.	А
6.	С	16.	D
7.	E	17.	С
8.	С	18.	Е
9.	D	19.	А
10.	D	20.	Е

2010 Physics Intermediate 2			
Sample Answer and Mark Allocation		Notes	Marks
21. (a) a $=\frac{v-u}{t}$	(½)		
$=\frac{6-0}{60}$	(1/2)		
$= 0.1 \text{ m/s}^2$	(1)		2
(b) s = area under graph = $(0.5 \times 60 \times 6) + (40 \times 6)$ = 420 m	$(\frac{1}{2})$ $(\frac{1}{2})$ (1)		2
(c) v $=\frac{s}{t}$	(½)		
$=\frac{420}{100}$ $=4.2 \text{ m/s}$	(½) (1)		2
(d) W = mg = 400×10 = 4000 N	$(\frac{1}{2})$ $(\frac{1}{2})$ (1)	accept 9.8 and 9.81 for 'g' which give 3920 N and 3924 N	2
(e) F = ma = 400×0.1 = 40 (N)	$(\frac{1}{2})$ $(\frac{1}{2})$ $(\frac{1}{2})$	must be consistent with (a) and (d)	
Upward force = $4000 + 40$ = 4040 N	(½) (1)		3
			Total 11

Samp	le Ans	swer and Mark Alloca	ation		Notes	Marks
22.	(a)	p before = p a $(2.0 \times 10^{-3} \times 4) = 3.2$ v = 2.5	fter $2 \times 10^{-3} v$ 5 m/s	$(\frac{1}{2})$ $(\frac{1}{2})$ (1)		2
	(b)	•				
			Direction	(1/2)	unacceptable: wind resistance	
		\downarrow	Air resistance	(1/2)	friction must be qualified	
		\bigvee	Weight (not gravity)	(1/2)		
			Direction	(1/2)		2
	(c)	Q = It		(1/2)		
		$I = \frac{1650}{0 \cdot 15}$		(1/2)		
		$= 1 \cdot 1 \times 10$	⁴ A	(1)		2
	(d)	Light travels faster th	an sound	(1)		1
						Total 7

Sam	Sample Answer and Mark Allocation					Notes	Marks
23.	(a)	E_h	=	cm Δ T	(1/2)		
		c	=	$\frac{2 \cdot 59 \times 10^7}{60 \times [(307 - (-173))]}$	(1/2)		
			=	899 J/kg°C	(1)		2
	(b)	Р	=	$\frac{\mathrm{E}}{\mathrm{t}}$	(1/2)		
		t	=	$2 \cdot 59 \times 10^7$	(1/2)		
			=	1440 18000 s	(1)		2
	(c)	288			(1)		
		= 144		(rocks)	(1)		2
	(d)	It wo	ould be	e easier	(1)		
		less 1 OR	than th	hal field strength at the surface of Mercury is that at the surface of Earth			
		Weig on E OR	ght of i arth	rocks on Mercury is smaller than their weigh	t		
			rity is l	less on Mercury	(1)		2
							Total 8

Sample A	nswer and Mark Allocation		Notes	Marks
24. (a)	$R_{T} = R_{1} + R_{2} = 8 + 24 = 32 \Omega$ $V = IR$ $I = \frac{6}{32}$ $I = 0.19 A$	(1) $(\frac{1}{2})$ $(\frac{1}{2})$ (1)		3
(b)	$V_{2} = \left(\frac{1}{R_{1} + R_{2}}\right) V_{S}$ $V_{2} = \left(\frac{8}{8 + 24}\right) 6$ $V_{2} = 1.5 V$ OR $V = IR$	(¹ / ₂) (¹ / ₂) (1) (¹ / ₂)		2
(c)	$= 0.19 \times 8$ = 1.5 V Voltage across 8 Ω resistor would decrease The 8 Ω resistor now has a smaller proportion of the total resistance or less current in the circuit	(1) (1) (1)		2
				Total 7

Samj	ple An	swer and Mark Allocation		Notes	Marks
25.	(a)	a.c. (source)	(1)		
		<u>changing</u> magnetic field/current is necessary (to induce voltage)	(1)	unacceptable: transformers do not work with dc	2
	(b)	P = IV = 0.5 × 12 = 6 W	$\binom{1}{2}$ $\binom{1}{2}$ (1)		2
	(c)	$P = IV = 0.23 \times 23 = 5.3 W$	$\binom{1}{2}$ $\binom{1}{2}$		1
	(d)	percentage efficiency = $\frac{\text{useful } P_o}{\text{Pi}} \times 100$	(¹ / ₂)		
		$= \frac{5 \cdot 3}{6} \times 100$ $= 88(\%)$	(½) (1)		2
	(e)	$\frac{N_{S}}{N_{P}} = \frac{V_{S}}{V_{P}}$	(1/2)		
		$V_{\rm S} = \frac{3000 \times 12}{1500}$	(1/2)		
		= 24 V	(1)		2
					Total 9

Samj	ple An	swer and Mark Allocation		Notes	Marks
26.	(a)	Y (n-channel enhancement) MOSFETZ Lamp	(1) (1)	unacceptable: transistor	2
	(b)	(Resistance) decreases	(1)		1
	(c)	(As resistance of thermistor decreases) voltage across thermistor decreases. V across X increases When it reaches $1.8V$ MOSFET V _(transistor) switches on Bulb lights <u>and</u> buzzer sounds	(1/2) (1/2) (1/2) (1/2) (1/2)		2
	(d)	To allow <u>switch</u> on <u>temperatures</u> to be varied	(1)		1
					Total 6

Samj	ole An	swer ar	nd Mark Allocation		Notes	Marks
27.	(a)	s t	$ = vt = \frac{51}{340} $	$\binom{1}{2}{1}{2}$		
			= 0.15 s	(1)		2
	(b)	(i)	Longitudinal	(1)		1
		(ii)	A transverse wave is one in which the particles vibrate at right angles to the direction of the wave.	(1)		
			A longitudinal wave is one in which the particles vibrate parallel to the direction of the wave.	(1)		2
		(iii)	Energy	(1)		1
	(c)	(i)	$P = \frac{V^2}{R}$	(1/2)		
			$R = \frac{315^2}{2400}$	(1/2)		
			$=$ 41·3 Ω	(1)		2
		(ii)	Any 2 of:			
			 independent switching or one off/others stay on to ensure that <u>315 V</u> is across each bulb if they were in series the processory voltage 	(1) (1)		
			• if they were in series the necessary voltage would be too high	(1)		2
						Total 10

Sam	Sample Answer and Mark Allocation						Notes	Marks
28	(a)	(i)	v	=	fλ	(1/2)		
			f	=	$\frac{3 \times 10^8}{0.06}$	(1/2)		
				=	$5 \times 10^9 \text{ Hz}$	(1)		2
		(ii)	Т	=	$\frac{1}{f}$	(1/2)		
			Т	=	$\frac{1}{5 \times 10^9}$	(1/2)		
				=	$2 \times 10^{-10} \text{ s}$	(1)		2
	(b)				at same time I microwaves have same speed	(1) (1)		2
	(c)	Cur	ved re	>	ere are no arrows = 0 for diagram Diagram must hav minimum of two ra All rays drawn mu come to a distinct : or incoming waves focussed towards of point gives point where energy is maximise	ays. ist focus s are one (1)	Where there is no diagram: Incoming waves are reflected to a point or focus (1) This maximises the signal at the focus (1)	2
			equiva		gives point where energy is maximise	(1)	This maximises the signal at the locus (1)	
								Total 8

Samj	ple An	swer and Mark Allocation		Notes	Marks
29.	(a)	A particle containing two protons and two neutrons OR			
		A helium nucleus	(1)		1
	(b)	The gain/loss of electrons by an atom	(1)		1
	(c)	$4800 \xrightarrow{1} 2400 \xrightarrow{2} 1200 \xrightarrow{3} 600 \xrightarrow{4} 300$ or equivalent	(1)		
		$4 \times 2.5 = 10$ hours	(1)		2
	(d)	$A = \frac{N}{t}$	(1/2)		
		$N = 1200 \times 2 \times 60$	(1/2)		
		= 144,000 (decays)	(1)		2
	(e)	Source may also emit β and/or γ radiation (accept other valid non-standard answer eg neutrons, positrons)	(1)		1
					Total 7

Samj	ole An	nswer and Mark Allocation		Notes	Marks
30.	(a)	(i) <u>Slows neutrons</u>	(1)		1
		(ii) <u>Absorbs neutrons</u>	(1)		1
	(b)	P) $P = \frac{E}{t}$			
		$E = 1.4 \times 10^9 \times 60 \times 60$	(1/2)		
		= 5.0 × 10 ¹² (J)	$(\frac{1}{2})$		
		Numbers of fissions = $\frac{5 \cdot 0 \times 10^{12}}{2 \cdot 9 \times 10^{-11}}$	(1)		
		$= 1.7 \times 10^{23}$	(1/2)		3
	(c)	Any valid advantage eg much greater energy per kg of fuel compared to other sources OR		These must be relevant to nuclear power and any statements eg 'dangerous' must be qualified	
		No greenhouse gases emitted or equivalent	(1)		
		Any valid disadvantage eg radioactive waste requires special storage	(1)		2
					Total 7

[END OF MARKING INSTRUCTIONS]