2010 Physics

Intermediate 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2010
The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from the External Print Team, Centre Services, Dalkeith.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's External Print Team, Centre Services, at Dalkeith may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Physics - Marking Issues

The current in a resistor is 1.5 amperes when the potential difference across it is $7 \cdot 5$ volts. Calculate the resistance of the resistor.

Answers

1. $V=I R$
$7 \cdot 5=1 \cdot 5 R$
$R=5 \cdot 0 \Omega$
2. $5 \cdot 0 \Omega$
3. $5 \cdot 0$
4. $4 \cdot 0 \Omega$
5. $\Omega \Omega$
6. $R=\frac{V}{I}=\frac{7 \cdot 5}{1 \cdot 5}=4 \cdot 0 \Omega$
7. $R=\frac{V}{I}=4 \cdot 0 \Omega$
8. $R=\frac{V}{I}=$ \qquad Ω
9. $R=\frac{V}{I}=\frac{7 \cdot 5}{1 \cdot 5}=$ \qquad Ω
10. $R=\frac{V}{I}=\frac{7 \cdot 5}{1 \cdot 5}=4 \cdot 0$
(1) Formula + substitution
(1/2) Formula but wrong substitution
GMI 5
11. $R=\frac{V}{I}=\frac{1 \cdot 5}{7 \cdot 5}=5 \cdot 0 \Omega$
(1/2) Formula but wrong substitution
GMI 5

GMI 5

GMI 7
15. $V=I R$

$$
R=\frac{I}{V}=\frac{1 \cdot 5}{7 \cdot 5}=0 \cdot 2 \Omega
$$

(1/2) Formula only
Issue

GMI 1

GMI 2 (a)

GMI 1

GMI 1

GMI 7
12. $R=\frac{V}{I}=\frac{75}{1.5}=5.0 \Omega$
(0) Wrong formula
(11⁄2) Arithmetic error

GMI 20

Ideal answer

GMI 4 and 1

GMI 4 and 1

GMI 4 and 1

GMI 2 (a) and 7

2010 Physics Intermediate 2

Marking scheme

Section A

1. E 11. B
2. D
3. B
4. B
5. C
6. D
7. A
8. D
9. A
10. C
11. D
12. E
13. C
14. C
15. E
16. D
17. A
18. D
19. E

2010 Physics Intermediate 2			
Sample Answer and Mark Allocation		Notes	Marks
$\text { 21. (a) } \begin{aligned} \mathrm{a} & =\frac{\mathrm{v}-\mathrm{u}}{\mathrm{t}} \\ & =\frac{6-0}{60} \\ & =0.1 \mathrm{~m} / \mathrm{s}^{2} \end{aligned}$	(1/2) (1/2) (1)		2
$\text { (b) } \begin{aligned} \mathrm{s} & =\text { area under graph } \\ & =(0.5 \times 60 \times 6)+(40 \times 6) \\ & =420 \mathrm{~m} \end{aligned}$	$\begin{aligned} & (1 / 2) \\ & (1 / 2) \\ & (1) \end{aligned}$		2
$\text { (c) } \quad \begin{aligned} \mathrm{v} & =\frac{\mathrm{s}}{\mathrm{t}} \\ & =\frac{420}{100} \\ & =4 \cdot 2 \mathrm{~m} / \mathrm{s} \end{aligned}$	(1/2) (1/2) (1)		2
$\text { (d) } \quad \begin{aligned} \mathrm{W} & =\mathrm{mg} \\ & =400 \times 10 \\ & =4000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & (1 / 2) \\ & (1 / 2) \\ & (1) \end{aligned}$	accept $9 \cdot 8$ and $9 \cdot 81$ for ' g ' which give 3920 N and 3924 N	2
$\text { (e) } \begin{aligned} \mathrm{F} \quad & =\mathrm{ma} \\ & =400 \times 0 \cdot 1 \\ & =40(\mathrm{~N}) \end{aligned} \quad \begin{aligned} \text { Upward force } & =4000+40 \\ & =4040 \mathrm{~N} \end{aligned}$	(1/2) (1/2) (1/2) (1/2) (1)	must be consistent with (a) and (d)	3
			Total 11

Sample Answer and Mark Allocation		Notes	Marks
23. (a) $\begin{aligned} \mathrm{E}_{\mathrm{h}} & =\mathrm{cm} \Delta \mathrm{~T} \\ \mathrm{c} & =\frac{2.59 \times 10^{7}}{60 \times[(307-(-173)]} \\ & =899 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C} \end{aligned}$	(1/2) (1/2) (1)		2
$\text { (b) } \begin{aligned} \mathrm{P} & =\frac{\mathrm{E}}{\mathrm{t}} \\ \mathrm{t} & =\frac{2.59 \times 10^{7}}{1440} \\ & =18000 \mathrm{~s} \end{aligned}$	(1/2) (1/2) (1)		2
$\text { (c) } \begin{aligned} & \frac{288000}{1440} \\ = & 200 \text { (rocks) } \end{aligned}$	(1) (1)		2
(d) It would be easier Gravitational field strength at the surface of Mercury is less than that at the surface of Earth OR Weight of rocks on Mercury is smaller than their weight on Earth OR Gravity is less on Mercury	(1) (1)		2
			Total 8

Page 7

Sample Answer and Mark Allocation		Notes	Marks
25. (a) a.c. (source) changing magnetic field/current is necessary (to induce voltage)	(1) (1)	unacceptable: transformers do not work with dc	2
(b) $\begin{aligned} \mathrm{P} & =\mathrm{IV} \\ & =0.5 \times 12 \\ & =6 \mathrm{~W} \end{aligned}$	$\begin{aligned} & (1 / 2) \\ & (1 / 2) \\ & (1) \end{aligned}$		2
$\text { (c) } \begin{aligned} \mathrm{P} & =\mathrm{IV} \\ & =0.23 \times 23 \\ & =5.3 \mathrm{~W} \end{aligned}$	$\begin{aligned} & (1 / 2) \\ & (1 / 2) \end{aligned}$		1
$\text { (d) } \begin{aligned} \text { percentage efficiency } & =\frac{\text { useful }_{\mathrm{o}}}{\mathrm{Pi}} \times 100 \\ & =\frac{5 \cdot 3}{6} \times 100 \\ & =88(\%) \end{aligned}$	(1/2) (1/2) (1)		2
$\text { (e) } \begin{aligned} \frac{\mathrm{N}_{\mathrm{S}}}{\mathrm{~N}_{\mathrm{P}}} & =\frac{\mathrm{V}_{\mathrm{S}}}{\mathrm{~V}_{\mathrm{P}}} \\ \mathrm{~V}_{\mathrm{S}} & =\frac{3000 \times 12}{1500} \\ & =24 \mathrm{~V} \end{aligned}$	(1/2) (1/2) (1)		2
			Total 9

Page 8

Sample Answer and Mark Allocation		Notes	Marks
26. (a) $\begin{array}{lll}\mathrm{Y} & \text { (n-channel enhancement) } \mathrm{MOSFET} \\ & \\ \mathrm{Z} & \mathrm{Lamp}\end{array}$	$\begin{aligned} & \text { (1) } \\ & \text { (1) } \end{aligned}$	unacceptable: transistor	2
(b) (Resistance) decreases	(1)		1
(c) (As resistance of thermistor decreases) voltage across thermistor decreases. V across X increases When it reaches $1 \cdot 8 \mathrm{~V}$ MOSFET $\mathrm{V}_{\text {(transistor) }}$ switches on Bulb lights and buzzer sounds	(1/2) (1/2) (1/2) (1/2)		2
(d) To allow switch on temperatures to be varied	(1)		1

Page 9

Page 12

[END OF MARKING INSTRUCTIONS]

