

2009 Physics

Higher

Finalised Marking Instructions

© Scottish Qualifications Authority 2009

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from the Question Paper Operations Team, Dalkeith.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's Question Paper Operations Team at Dalkeith may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Scottish Qualifications Authority

Detailed Marking Instructions – Higher Physics

1. General Marking Instructions

SQA published Physics General Marking Instructions in July 1999. Please refer to this publication when interpreting the detailed Marking Instructions.

2. Recording of marks

The following additional advice was given to markers regarding the recording of marks on candidate scripts.

- (a) The total mark awarded for each question should be recorded in the outer margin. The inner margin should be used to record the mark for each part of a question as indicated in the detailed marking instructions.
- (b) The fine divisions of marks shown in the detailed Marking Instructions may be recorded within the body of the script beside the candidate's response. Where such marks are shown they must total to the mark in the inner margin.
- (c) Numbers recorded on candidate scripts should always be the marks being awarded. Negative marks or marks to be subtracted should not be recorded on scripts.
- (d) The number out of which a mark is scored should **never** be recorded as a **denominator**. $(\frac{1}{2} \text{ mark will always mean one half mark and never 1 out of 2})$
- (e) Where square ruled paper is enclosed inside answer books it should be clearly indicated that this item has been considered by the marker. The mark awarded should be transferred to the script booklet inner margin and marked G.
- (f) The mark awarded for each question should be transferred to the grid on the back of the script. When the marker has completed marking the candidate's response to all questions, the marks for individual questions are added to give the total script mark.
- (g) The total mark awarded for an individual question may include an odd half mark $-\frac{1}{2}$. If there is an odd half mark in the total script mark, this is rounded up to the next whole number when transferred to the box on the front of the script.

3. Other Marking Symbols which may be used

TICK SCORE THROUGH	_ _	Correct point as detailed in scheme, includes data entry Any part of answer which is wrong. (For a block of wrong answers indicate zero marks.)
INVERTED VEE WAVY LINE	_	A point omitted which has led to a loss of marks. Under an answer worth marks which is wrong only
		because a wrong answer has been carried forward from a previous part.
"G"	_	Reference to a graph on separate paper. You MUST show a mark on the graph paper and the SAME mark on the script.

4. Marking Symbols which may <u>NOT</u> be used.

"WP"	_	Marks not awarded because an apparently correct
		answer was due to the use of "wrong physics".
"ARITH"	_	Candidate has made an arithmetic mistake.
"SIG FIGS" or "SF"	_	Candidate has made a mistake in the number of
		significant figures for a final answer.

<u> Physics – Marking Issues</u>

The current in a resistor is 1.5 amperes when the potential difference across it is 7.5 volts. Calculate the resistance of the resistor.

	Answers	Mark +comment	Issue
1.	V = IR 7.5=1.5R $R = 5.0 \Omega$	$\binom{1}{2}$ $\binom{1}{2}$ (1)	Ideal Answer
2.	5·0Ω	(2) Correct Answer	GMI 1
3.	5.0	(1 ¹ / ₂) Unit missing	GMI 2(a)
4.	4·0Ω	(0) No evidence/Wrong Answer	GMI 1
5.	Ω	(0) No final answer	GMI 1
6.	$R = \frac{V}{I} = \frac{7 \cdot 5}{1 \cdot 5} = 4 \cdot 0 \Omega$	(1 ¹ / ₂) Arithmetic error	GMI 7
7.	$R = \frac{V}{I} = 4.0 \Omega$	(¹ / ₂) Formula only	GMI 4 and 1
8.	$R = \frac{V}{I} = \underline{\qquad} \Omega$	(¹ / ₂) Formula only	GMI 4 and 1
9.	$R = \frac{V}{I} = \frac{7 \cdot 5}{1 \cdot 5} = \underline{\qquad} \Omega$	(1) Formula + subs/No final answer	GMI 4 and 1
10.	$R = \frac{V}{I} = \frac{7 \cdot 5}{1 \cdot 5} = 4 \cdot 0$	(1) Formula + substitution	GMI 2(a) and 7
11.	$R = \frac{V}{I} = \frac{1.5}{7.5} = 5.0 \Omega$	(¹ / ₂) Formula but wrong substitution	GMI 5
12.	$R = \frac{V}{I} = \frac{75}{1.5} = 5.0 \Omega$	(¹ / ₂) Formula but wrong substitution	GMI 5
13.	$R = \frac{I}{V} = \frac{7 \cdot 5}{1 \cdot 5} = 5 \cdot 0 \Omega$	(0) Wrong formula	GMI 5
14.	$V=IR 7.5 = 1.5 \times R R=0.2 \Omega$	(1 ¹ / ₂) Arithmetic error	GMI 7
15.	V=IR		
	$R = \frac{I}{V} = \frac{1.5}{7.5} = 0.2 \Omega$	(¹ / ₂) Formula only	GMI 20

2009 Physics Higher

Marking scheme

Section A

1.	В	11.	С
2.	С	12.	А
3.	В	13.	С
4.	D	14.	D
5.	С	15.	Е
6.	А	16.	В
7.	С	17.	D
8.	D	18.	Е
9.	С	19.	А
10.	В	20.	Е

		2009 Physics – Higher				
Samp	ole Ans	wer and Mark Allocation		Notes	Inner Margin	Outer Margin
21.	(a)	(i) $u_h = 6.5 \cos 50^\circ = 4.2 \text{ m s}^{-1}$	1		1	7
		(ii) $u_v = 6.5 \sin 50^\circ = 5.0 \text{ m s}^{-1}$	1		1	
	(b)	$t = \frac{s}{v}$ 2.9				
		$= \frac{1}{4 \cdot 2}$	$\frac{1}{2}$			
		= 0.69 (s)	$\frac{1}{2}$		1	
	(c)	$s = ut + \frac{1}{2} at^{2}$ = $5 \times 0.69 + \frac{1}{2} \times -9.8 \times (0.69)^{2}$ = 1.1 (m) so height $h = 2.3 + 1.1 = 3.4$ m	1/2 1/2 1/2 1/2	"u" and "a" must have opposite signs, otherwise max ½ for formula	2+	
	(d)	Ball would <u>not</u> land in basket	1/2			
		(initial) vertical speed would increase	1			
		So ball is higher than the basket when it has travelled 2.9 m horizontally				
		or				
		So ball has travelled further horizontally when it is at the same height as the basket	1/2		2+	

			2009 Physics – Higher				_
Sam	ple An	swer a	nd Mark Allocation	Notes	Inner Margin	Outer Margin	
22.	(a)	(i)	(A)				7
			mean = $\frac{248 + 239 + 231 + 203 + 234}{5}$ = 255 µs	1		1•	
			(B) uncertainty = $\frac{263 - 248}{5}$ = (±) 3 µs	1	lose last mark if go on to calculate % uncertainty (1.18%)	1•	
		(ii)	(mean contact time = $255 \pm 3 \ \mu s$)		must attempt explanation but		
			max value = $258 \ \mu s$	1/2	WP in explanation gets zero		
			club does <u>not</u> meet standard	¹ / ₂		1+	
	(b)	(i)	$F = \frac{mv - mu}{t}$	1/2			
			$= \frac{4 \cdot 5 \times 10^{-2} \times (50 - 0)}{450 \times 10^{-6}}$	1/2			
			= 5000 N	1		2	
		(ii)	Impulse on the ball is greater or 1 Δ mv is greater				
			Speed increased	1		2•	

			2009 Physics – Higher				
Sam	ple Aı	nswer	and Mark Allocation		Notes	Inner Margin	Outer Margin
23.	(a)	(i)	$P \times V = 2000$ 1995 2002 2001 all 4 values	1			10
			$P \times V = \text{constant}$	1			
			or $P \times V = 2000$				
			or $P_1 V_1 = P_2 V_2$				
			or $P = \mathbf{k}/V$			2	
		(ii)	Gas <u>molecules collide</u> with <u>walls</u> of container $(\frac{1}{2})$ more often $(\frac{1}{2})$ so (average) force increases $(\frac{1}{2})$		first ¹ / ₂ mark needed first		
			pressure increases $(\frac{1}{2})$ Any mention of energy or speed of		'pressure constant' or 'decreases' gets (0)		
			molecules increasing or 'harder collisions' is WP so gets zero			2	
	(b)	(i)	pressure due to water				
			$P = \rho g h$	1/2			
			$= 1020 \times 9.8 \times 12$	1/2			
			= 120000 (Pa)	1/2			
			$Total \ pressure = 120000 + 1.01 \times 10^5$	¹ / ₂	deduct 1/4 if final answer not		
			$= 2.21 \times 10^5 (Pa)$		given	2	
		(ii)	$P_1V_1 = P_2V_2$	1/2			
			$1.01 \times 10^5 \times 1.50 \times 10^{-3} = 2.21 \times 10^5 \times V_2$	¹ / ₂			
			$V_2 = 6.86 \times 10^{-4} \text{ m}^3$	1		2	
	(c)	(As	diver ascends)				
		pres	sure decreases $\frac{1}{2}$ as $P = \rho g h$	1/2			
		volu (or p	me of air in lungs will increase pressure difference increases)	1/2	dependent on having at least		
		so <u>lu</u>	ngs may become damaged	1/2	one of the explanations above.	2+	

			20	09 PI	hysics – Higher				
Sam	ple Aı	nswer	and N	1ark	Allocation		Notes	Inner Margin	Outer Margin
24.	(a)	(i)	V_{tpd}	=	IR				6
				=	1.5×3	$^{1}/_{2}$			
				=	4·5 (V)	1/2	if stop at 4.5 V, get (1) $(4.5)^{1/2}$ gets $\frac{1}{2}$		
			lost v	volts	$= E - V_{tpd}$	1/2	independent		
					= 6.0 - 4.5				
					= 1.5 V	1/2		2•	
		(ii)	r	=	<u>lost volts</u> I	1/2			
				=	$\frac{1\cdot 5}{3\cdot 0}$	1/2	or consistent with (a) (i)		
				=	0·5 Ω	1			
			Alts			_			
			r	=	$\frac{E}{I}$ short circuit current	¹ / ₂			
				=	$\frac{6 \cdot 0}{12}$	1/2			
				=	0·5 Ω	1			
			Ε	=	IR + Ir	1/2			
			6.0	=	$(3 \times 1.5) + (3 \times r)$	$\frac{1}{2}$			
			r	=	0·5 Ω	1		2•	
	(b)	curre	ent dec	rease	25	1	must attempt explanation -		
		so lo	st volt	s (V=	= <i>Ir</i>) decreases	1	unswei en ewn gete zeie	2+	

Sam	ple An	swer a	2009 Ph and Mark	ysics – Higher Allocation		Notes	Inner Margin	Outer Margin
25.	(a)	(i)	$V_P =$	$3 \times 0.5 = 1.5 \text{ mV}$	1	if go further ie work out V_{rms} – zero	1	9
		(ii)	(Period =	= 4 ms)				
			<i>f</i> =	$\frac{1}{T}$	1/2			
			=	$\frac{1}{4 \times 10^{-3}}$	1/2			
			=	250 Hz	1		2	

	2009 Physics – Higher				
Sample Answer a	nd Mark Allocation	Notes	Inner Margin	Outer Margin	
(b) (i)	inverting (mode)	1		1	Margin
(ii)	$V_{rms} = \frac{V_{peak}}{\sqrt{2}}$	1/2	Can use gain formula first gives $V_0 = -12.4$ V etc		
	$= \frac{6 \cdot 2 \times 10^{-3}}{\sqrt{2}}$	1/2			
	$= 4.38 \times 10^{-3} (V)$	¹ / ₂			
	$\frac{V_O}{V_i} = -\frac{R_f}{R_I}$	1/2			
	$\frac{V_O}{4 \cdot 38 \times 10^{-3}} = -\frac{10 \times 10^6}{5 \times 10^3}$	1/2		3+	
	$V_O = (-) 8.8 \mathrm{V}$	1/2			
(iii)	trace will be "clipped"/flattened at $(+/-9 \text{ V})$ or <u>almost</u> square wave (1) max output voltage will be $+/-9 \text{ V/V}_s$	1 1			
	or op-amp saturates or saturation occurs			2+	

		2009 Physics – Higher			
Sam	ple Ai	iswer and Mark Allocation	Notes	Inner Margin	Outer Margin
26.	(a)	(current) (1) or (0) 0 time	no origin label – deduct ½	1•	8
	(b)	$V_{R} = IR$ $= 5 \times 10^{-3} \times 500$ $= 2.5 (V)$ $V_{C} = 12 - 2.5$ $= 9.5 V$	¹ /2 ¹ /2 ¹ /2	3+	
	(c)	$E = \frac{1}{2}CV^{2}$ = 0.5 × 47 × 10 ⁻⁶ × 12 ² = 3.4 × 10 ⁻³ J	Must use 12 V – otherwise max $\frac{1}{2}$ for correct formula. Alternative: Q = CV = 47 × 10 ⁻⁶ × 12 = 5.64 × 10 ⁻⁴ (C) E = $\frac{1}{2}$ QV = $\frac{1}{2} \times 5.64 \times 10^{-4} \times 12$ = 3.4 × 10 ⁻³ J 1 $\frac{1}{2}$ for both formulae $\frac{1}{2}$ for both substitutions	2	
	(d)	Max energy the same/'no effect' Values of "C" <u>and</u> "V" are same as before		2+	

		2009 Physics – Higher			
Sam	ple A	nswer and Mark Allocation	Notes	Inner Margin	Outer Margin
27.	(a)	waves <u>meet</u> out of phase or crest meets trough or path difference = $(n + \frac{1}{2}) \lambda$	must have waves meeting/ combining		4
	(b)	λ blue light is shorter (than λ red light) $\frac{1}{2}$ and $n\lambda = d \sin\theta$ or $\sin\theta = n\lambda/d$ $\frac{1}{2}$		1•	
	(c)	$n\lambda = d \sin \theta \qquad \frac{1}{2}$ $2 \times 4.73 \times 10^{-7} = 2.00 \times 10^{-6} \sin \theta \qquad \frac{1}{2}$ $\theta = 28.2^{\circ} \qquad 1$		2+	

2009 Physics – Higher				
Sample Answer and Mark Allocation		Notes	Inner Margin	Outer Margin
28. (a) (i) $E_3 \longrightarrow E_0$ $(\Delta)E \alpha f \text{ or } E = hf \text{ or in words}$ $f \alpha \frac{1}{\lambda} \text{ or } v = f\lambda \text{ or in words}$	1 1⁄2 1⁄2	$E_0 \rightarrow E_3 - \text{zero}$ between E_0 and $E_3 - \text{zero}$ between E_3 and $E_0 - \text{ok}$ wrong transition – no marks can be shown by calculation	2•	7
(ii) $(\Delta)E = hf$ or $W_2 - W_1 = hf$ $-5 \cdot 2 \times 10^{-19} - (-9 \cdot 0 \times 10^{-19}) = 6 \cdot 63 \times 10^{-34} \times f$ $f = 5.7 \times 10^{14} \text{ Hz}$	1/2 1/2		2	
(b) $\lambda_a = \left(\frac{v}{f}\right) = \frac{3 \times 10^8}{4 \cdot 6 \times 10^{14}}$ substitution $= 6.5 \times 10^{-7} \text{ (m)}$	1 ▼ ¹ / ₂ ¹ / ₂	<pre>can be got anywhere for 1 mark</pre>		
$\frac{\lambda_a}{\lambda_g} = \frac{\sin \theta_a}{\sin \theta_g}$ $\frac{6 \cdot 5 \times 10^{-7}}{\lambda_g} = \frac{\sin 53^\circ}{\sin 30^\circ}$	1/2 1/2			
$\lambda_{\rm g} = 4 \cdot 1 \times 10^{-7} \mathrm{m}$	I		3+	

		2009 Physics – Higher			
Sam	ple Ai	swer and Mark Allocation	Notes	Inner Margin	Outer Margin
29.	(a)	(i) $E_k = hf - hf_0$ = $5 \cdot 23 \times 10^{-19} - 2 \cdot 56 \times 10^{-19}$			5
		$= 2.67 \times 10^{-19} \text{ J}$ 1		1	
		(ii) $E_k = \frac{1}{2}mv^2$			
		$2 \cdot 67 \times 10^{-19} = \frac{1}{2} \times 9 \cdot 11 \times 10^{-31} \times v^2$			
		$v = 7.66 \times 10^5 \mathrm{ms^{-1}}$ 1		2•	
	(b)	No change (to maximum speed)/no effect 1			
		Energy/frequency of photons does not change			
		or			
		Energy an electron receives is the same 1		2+	

	2009 Physics – Higher				
Sample Answer a	and Mark Allocation		Notes	Inner Margin	Outer Margin
30. (a) (i)	r = 95 $s = 7$	1/2 1/2		1	7
(ii)	Total mass of reactants > total mass of products or loss of mass ("missing" mass is converted into energy) according to $E = mc^2$	1/2 1/2	needs to be directional ie mass before > mass after	1	
(iii)	Total mass before = $390 \cdot 173 \times 10^{-27} + 1 \cdot 675 \times 10^{-27}$ = $3 \cdot 91848 \times 10^{-25}$ (kg) Total mass after = $230 \cdot 584 \times 10^{-27} + 157 \cdot 544 \times 10^{-27} + (2 \times 1 \cdot 675 \times 10^{-27})$ = $3 \cdot 91478 \times 10^{-25}$ (kg) Δm = $3 \cdot 91848 \times 10^{-25} - 3 \cdot 91478 \times 10^{-25}$ = $3 \cdot 7 \times 10^{-28}$ (kg) E = mc^2 = $3 \cdot 7 \times 10^{-28} \times (3 \times 10^8)^2$ = $3 \cdot 3 \times 10^{-11}$ J	1/2 1/2 1/2 1/2 1	if mass rounding off then max 1 ¹ / ₂	3	

2009 Physics – Higher Sample Answer and Mark Allocation			Notes	Inner Margin	Outer Margin		
(1	b)	(i)	12 mm	1		1	
		(ii)	$200 \rightarrow 100 \rightarrow 50$				
			2 half-value thicknesses	1/2			
			$= 2 \times 12 = 24 \text{ mm}$	1/2		1	

[END OF MARKING INSTRUCTIONS]