2008 Physics

Intermediate 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2008
The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from the Assessment Materials Team, Dalkeith.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's Assessment Materials Team at Dalkeith may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Physics - Marking Issues

The current in a resistor is 1.5 amperes when the potential difference across it is 7.5 volts. Calculate the resistance of the resistor.

1.	Answers	Mark + Comment	Issue
	$\mathrm{V}=\mathrm{IR}$	(1/2)	Ideal answer
	$7 \cdot 5=1 \cdot 5 \mathrm{R}$	(1/2)	
	$\mathrm{R}=5.0 \Omega$	(1)	
2.	$5 \cdot 0 \Omega$	(2) Correct answer	GMI 1
3.	$5 \cdot 0$	(11/2) Unit missing	GMI 2 (a)
4.	$4 \cdot 0 \Omega$	(0) No evidence/wrong answer	GMI 1
5.	Ω	(0) No final answer	GMI 1
6.	$\mathrm{R}=\frac{V}{I}=\frac{7 \cdot 5}{1 \cdot 5}=4 \cdot 0 \Omega$	(11/2) Arithmetic error	GMI 7
7.	$\mathrm{R}=\frac{V}{I}=4 \cdot 0 \Omega$	(1/2) Formula only	GMI 4 and 1
8.	$\mathrm{R}=\frac{V}{I}=$ \qquad $_\Omega$	(1/2) Formula only	GMI 4 and 1
9.	$\mathrm{R}=\frac{V}{I}=\frac{7 \cdot 5}{1 \cdot 5}=\square \Omega$	(1) Formula + subs/No final answer	GMI 4 and 1
10.	$\mathrm{R}=\frac{V}{I}=\frac{7 \cdot 5}{1 \cdot 5}=4 \cdot 0$	(1) Formula + substitution	GMI 2 (a) and 7
11.	$\mathrm{R}=\frac{V}{I}=\frac{1 \cdot 5}{7 \cdot 5}=5 \cdot 0 \Omega$	(1/2) Formula but wrong substitution	GMI 5
12.	$\mathrm{R}=\frac{V}{I}=\frac{75}{1 \cdot 5}=5 \cdot 0 \Omega$	(1⁄2) Formula but wrong substitution	GMI 5
13.	$\mathrm{R}=\frac{I}{V}=\frac{7 \cdot 5}{1 \cdot 5}=5 \cdot 0 \Omega$	(0) Wrong formula	GMI 5
14.	$\mathrm{V}=\mathrm{IR} \quad 7.5=1.5 \times \mathrm{R} \quad \mathrm{R}=0.2 \Omega$	(11/2) Arithmetic error	GMI 7
15.	$\mathrm{V}=\mathrm{IR}$		
	$\mathrm{R}=\frac{I}{V}=\frac{1 \cdot 5}{7 \cdot 5}=0 \cdot 2 \Omega$	(1/2) Formula only	GMI 20

2008 Physics Intermediate 2

Marking scheme

Section A

1. E
2. D
3. C
4. E
5. C
6. C
7. B
8. B
9. D
10. C
11. B
12. A
13. A
14. B
15. D
16. A
17. C
18. E
19. D
20. A

2008 Physics Intermediate 2			
Sample Answer and Mark Allocation		Notes	Marks
$\text { 21. (a) } \begin{aligned} a & =\frac{v-u}{t} \\ a & =\frac{9}{2} \\ a & =4 \cdot 5 \mathrm{~m} / \mathrm{s}^{2} \end{aligned}$	(1/2) (1/2) (1)		2
$\text { (b) } \quad \begin{aligned} & \mathrm{F}=\mathrm{m} \times \mathrm{a} \\ & \mathrm{~F}=15 \times 4.5 \\ & \mathrm{~F}=67.5 \mathrm{~N} \end{aligned}$	$\begin{aligned} & (1 / 2) \\ & (1 / 2) \\ & (1) \end{aligned}$		2
$\text { (c) } \quad \begin{aligned} & \mathrm{d}=\text { area under graph } \\ & \mathrm{d}=(0.5 \times 9 \times 2)+(10 \times 9)+(0.5 \times 9 \times 1) \\ & \mathrm{d}=9+90+4.5 \\ & \mathrm{~d}=103.5 \mathrm{~m} \end{aligned}$	$\begin{aligned} & (1 / 2) \\ & (1 / 2) \\ & (1) \end{aligned}$		2
$\text { (d) } \quad \begin{aligned} \mathrm{P} & =\frac{1}{\mathrm{f}} \\ \mathrm{P} & =\frac{1}{0 \cdot 2} \\ \mathrm{P} & =5 \mathrm{D} \end{aligned}$	(1/2) (1/2) (1)		2
			Total 8

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Sample Answer and Mark Allocation} \& Notes \& Marks \\
\hline 24. \& (a) \& \multicolumn{2}{|l|}{\[
\begin{aligned}
\& \mathrm{E}_{\mathrm{p}}=\mathrm{mgh} \\
\& \mathrm{E}_{\mathrm{p}}=750 \times 10 \times 7 \cdot 2 \\
\& \mathrm{E}_{\mathrm{p}}=54000 \mathrm{~J}
\end{aligned}
\]} \& \begin{tabular}{l}
(1/2) \\
(1/2) \\
(1)
\end{tabular} \& \& 2 \\
\hline \multicolumn{4}{|l|}{(b) (i) 54000 J
\[
\text { (ii) } \quad \mathrm{E}_{\mathrm{K}}=\frac{1}{2} \mathrm{mv}^{2} \mathrm{~F} .
\]} \& \begin{tabular}{l}
(1) \\
(1/2) \\
(1/2) \\
(1)
\end{tabular} \& \& 1

2

\hline \& \& \& \& \& \& Total 5

\hline
\end{tabular}

Sample Answer and Mark Allocation					Notes	Marks
		$\begin{aligned} & \mathrm{P}=\mathrm{I}^{2} \mathrm{R} \\ & 2=\mathrm{I}^{2} \times 50 \\ & \mathrm{I}^{2}=0 \cdot 04 \\ & \mathrm{I}=0 \cdot 2 \mathrm{~A} \end{aligned}$		(1/2) (1/2) (1)		2
(b) (i) $\begin{aligned} \frac{1}{\mathrm{R}_{\mathrm{t}}} & =\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}} \\ \frac{1}{\mathrm{R}_{\mathrm{t}}} & =\frac{1}{60}+\frac{1}{30} \\ \mathrm{R}_{\mathrm{t}} & =20 \Omega\end{aligned}$ (ii) $\mathrm{P}=\frac{\mathrm{V}^{2}}{\mathrm{R}}$ $\mathrm{P}=\frac{9^{2}}{60}$ $=1.35 \mathrm{~W}$ $\mathrm{P}=\frac{\mathrm{V}^{2}}{\mathrm{R}}$ $\mathrm{P}=\frac{9^{2}}{30}$ $=2.7 \mathrm{~W}$ (iii) 30 ohm resistor will overheat (1/2) $1 / 2$ for equation once only. (1/2) substitutions. (1)						
				(1)		1
						Total 9

Sample Answer and Mark Allocation					Notes	Marks
		(i) (ii)	The resistance of LDR (with light level rise) V across R rises until MOSFET switche the motor to set the light level at closes.	(1) (1) (1) (1)		3
		(i) (ii) (iii)	3000 ohms $\begin{aligned} & \mathrm{V}_{1}=\left(\frac{\mathrm{R}_{1}}{\mathrm{R}_{1}+\mathrm{R}_{2}}\right) \mathrm{V}_{\mathrm{S}} \\ & \mathrm{~V}=\left(\frac{600}{600+3000}\right) \times 12 \\ & \mathrm{~V}=2 \mathrm{~V} \end{aligned}$ Since V $<2.4 \mathrm{~V}$ transist switch on so blinds do not shut.	(1) (1/2) (1/2) (1) (1) (1)		1 2 2
						Total 9

Sample Answer and Mark Allocation		Notes	Marks
28. (a) (i) to limit current in/voltage across the LED (ii) $\begin{aligned} & \mathrm{Vr}=12-2=10 \mathrm{~V} \\ & \mathrm{R}=\frac{\mathrm{V}}{\mathrm{I}} \\ & \mathrm{R}=\frac{10}{0 \cdot 02} \\ & \mathrm{R}=500 \Omega \end{aligned}$ (iii) $\begin{aligned} \mathrm{I} & =10 \times 20 \\ & =200 \mathrm{~mA} \\ & =0.2 \mathrm{~A} \end{aligned}$	(1) (1) (1/2) (1/2) (1) (1) (1)		3 2
$\text { (b) } \begin{aligned} \frac{\mathrm{n}_{\mathrm{s}}}{\mathrm{n}_{\mathrm{p}}} & =\frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{~V}_{\mathrm{p}}} \\ \frac{\mathrm{n}_{\mathrm{s}}}{200} & =\frac{84}{12} \\ \mathrm{n}_{\mathrm{s}} & =1400 \text { (turns) } \end{aligned}$	(1/2) (1/2) (1)		2
			Total 8

Sample Answer and Mark Allocation				Notes	Marks
	(a)	Converging/convex	(1)		1
		ray parallel to axis and through ' f ' ray through centre of lens projections to a point image position 5-7 cm	(1/2) (1/2) (1/2) (1/2)		2
	(c)	Make thinner/or less curved	(1)		1
	(d)	Long sight	(1)		1
					Total 5

Sample Answer and Mark Allocation				Notes	Marks
		Count rate increases Air is more easily penetrated penetrated	(1) (1)		2
	(b)	Gamma penetrates best/other two wo not penetrate steel	(1) (1)		2
	(c)	x-rays longer/gamma shorter	(1)		1
					Total 5

Sample Answer and Mark Allocation				Notes	Marks
31. (a)	time to dec	en for half of the or activity to decr	(1)		1
(b)	$\begin{aligned} & \text { Days } \\ & 0 \\ & 2.7 \\ & 5.4 \\ & 8.1 \\ & 10.8 \\ & 13.5 \end{aligned}$	tivity 64 32 table (or s 16 8 4 $2 \mathbf{k B q}$	(1) (1)		2
(c)	Any 2 increa	f shielding/limitin ing distance	(1) each		2
	(i)	$\begin{aligned} \mathrm{H} & =\mathrm{w}_{\mathrm{r}} \mathrm{D} \\ & =20 \times 10 \mathrm{mGy} \\ & =200 \mathrm{mSv} \end{aligned}$	(1/2) (1/2) (1)		2
	(ii)	Tissue type	(1)		1
					Total 8

[END OF MARKING INSTRUCTIONS]

