2008 Physics

Higher

Finalised Marking Instructions

© Scottish Qualifications Authority 2008
The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from the Assessment Materials Team, Dalkeith.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's Assessment Materials Team at Dalkeith may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Scottish Qualifications Authority

Detailed Marking Instructions - Higher Physics

1. General Marking Instructions

SQA published Physics General Marking Instructions in July 1999. Please refer to this publication when interpreting the detailed Marking Instructions.

2. Recording of marks

The following additional advice was given to markers regarding the recording of marks on candidate scripts.
(a) The total mark awarded for each question should be recorded in the outer margin. The inner margin should be used to record the mark for each part of a question as indicated in the detailed marking instructions.
(b) The fine divisions of marks shown in the detailed Marking Instructions may be recorded within the body of the script beside the candidate's response. Where such marks are shown they must total to the mark in the inner margin.
(c) Numbers recorded on candidate scripts should always be the marks being awarded. Negative marks or marks to be subtracted should not be recorded on scripts.
(d) The number out of which a mark is scored should never be recorded as a denominator. ($1 / 2$ mark will always mean one half mark and never 1 out of 2)
(e) Where square ruled paper is enclosed inside answer books it should be clearly indicated that this item has been considered by the marker. The mark awarded should be transferred to the script booklet inner margin and marked G.
(f) The mark awarded for each question should be transferred to the grid on the back of the script. When the marker has completed marking the candidate's response to all questions, the marks for individual questions are added to give the total script mark.
(g) The total mark awarded for an individual question may include an odd half mark $-1 / 2$. If there is an odd half mark in the total script mark, this is rounded up to the next whole number when transferred to the box on the front of the script.

3. Other Marking Symbols which may be used

TICK	-	Correct point as detailed in scheme, includes data entry
SCORE THROUGH	-	Any part of answer which is wrong. (For a block of wrong answers indicate zero marks.)
INVERTED VEE	-	A point omitted which has led to a loss of marks.
WAVY LINE	-	Under an answer worth marks which is wrong only because a wrong answer has been carried forward from
"G"	a previous part.	
Reference to a graph on separate paper. You MUST show a mark on the graph paper and the SAME mark on the script.		

4. Marking Symbols which may NOT be used.

"WP" - Marks not awarded because an apparently correct answer was due to the use of "wrong physics".
"ARITH" - Candidate has made an arithmetic mistake.
"SIG FIGS" or "SF" - Candidate has made a mistake in the number of significant figures for a final answer.

Physics - Marking Issues

The current in a resistor is 1.5 amperes when the potential difference across it is 7.5 volts. Calculate the resistance of the resistor.

	Answers	Mark + comment	Issue
1.	$\mathrm{V}=\mathrm{IR}$	(1/2)	Ideal Answer
	$7 \cdot 5=1 \cdot 5 \mathrm{R}$	(1/2)	
	$\mathrm{R}=5 \cdot 0 \Omega$	(1)	
2.	$5 \cdot 0 \Omega$	(2) Correct Answer	GMI 1
3.	$5 \cdot 0$	(11/2) Unit missing	GMI 2(a)
4.	$4 \cdot 0 \Omega$	(0) No evidence/Wrong Answer	GMI 1
5.	Ω	(0) No final answer	GMI 1
6.	$\mathrm{R}=\frac{V}{I}=\frac{7 \cdot 5}{1.5}=4.0 \Omega$	(11/2) Arithmetic error	GMI 7
7.	$\mathrm{R}=\frac{V}{I}=4 \cdot 0 \Omega$	(1/2) Formula only	GMI 4 and 1
8.	$\mathrm{R}=\frac{V}{I}=$ \qquad	(1/2) Formula only	GMI 4 and 1
9.	$\mathrm{R}=\frac{V}{I}=\frac{7 \cdot 5}{1 \cdot 5}=$	(1) Formula + subs/No final answer	GMI 4 and 1
10.	$\mathrm{R}=\frac{V}{I}=\frac{7 \cdot 5}{1 \cdot 5}=4 \cdot 0$	(1) Formula + substitution	GMI 2(a) and 7
11.	$\mathrm{R}=\frac{V}{I}=\frac{1 \cdot 5}{7 \cdot 5}=5 \cdot 0 \Omega$	(1/2) Formula but wrong substitution	GMI 5
12.	$\mathrm{R}=\frac{V}{I}=\frac{75}{1 \cdot 5}=5 \cdot 0 \Omega$	(1/2) Formula but wrong substitution	GMI 5
13.	$\mathrm{R}=\frac{I}{V}=\frac{7 \cdot 5}{1 \cdot 5}=5 \cdot 0 \Omega$	(0) Wrong formula	GMI 5
14.	$\mathrm{V}=\mathrm{IR} \quad 7.5=1.5 \times \mathrm{R} \quad \mathrm{R}=0.2 \Omega$	(11/2) Arithmetic error	GMI 7
15.	$\mathrm{V}=\mathrm{IR}$		
	$\mathrm{R}=\frac{I}{V}=\frac{1 \cdot 5}{7 \cdot 5}=0 \cdot 2 \Omega$	(1/2) Formula only	GMI 20

2008 Physics Higher
Marking scheme

Section A

1. D $11 . \quad \mathrm{A}$
2.

A
12. B
3.

B
13. E
4. C
14. C
5. D
15. A
6. C
16. B
7. D
17. B
8. E
18. C
9.

E
19.

C

10
D
20.

D

2008 Physics - Higher			
Sample Answer and Mark Allocation	Notes	Inner Margin	Outer Margin
21. (a) $\begin{aligned} v^{2} & =u^{2}+2 a s \\ 12^{2} & =30^{2}+(2 \times-9 \times \mathrm{s}) \\ \boldsymbol{s} & =\mathbf{4 2} \mathbf{~ m} \end{aligned}$ OR $\begin{aligned} t & =\frac{v-u}{a} \\ & =\frac{12-30}{-9}=2(\mathrm{~s}) \\ s & =u t+1 / 2 a t^{2} \\ & =(30 \times 2)+\left(1 / 2 \times-9 \times 2^{2}\right) \\ & =42 \mathrm{~m} \end{aligned}$ $1 / 2$ for both equations OR $\begin{aligned} t & =\frac{v-u}{a}=2(\mathrm{~s}) \\ s & =\text { av. speed } \times \text { time } \\ & =21 \times 2 \\ & =42 \mathrm{~m} \end{aligned}$ $1 / 2$ both equations	watch for u, v correct way round watch for \boldsymbol{a} (must be negative) otherwise $\max 1 / 2$ for formula $\text { If } \frac{12-30}{-9}=-2 \mathrm{~s}$ and then substitute +2 treat as arith - $1 / 2$ Must be average speed, otherwise 0	2	8
(b) Speed at Q is greater/faster Mass of car is greater/bigger Deceleration/acc ${ }^{\mathrm{n}}$ is less Since $a=F / m$ (and F is constant) Can gain full marks by calculation	Must have $1^{\text {st }}$ statement or 0 marks Deduct $1 / 2$ for weight/heavier in place of mass Don't accept acc ${ }^{\mathrm{n}} /$ dec $^{\mathrm{n}}$ 'SLOWER'	2+	

2008 Physics - Higher				
Sample Answer and	Mark Allocation	Notes	Inner Margin	Outer Margin
(c) (i)	electrons and holes recombine at/in the junction (and energy is released) $1 / 0$ do not accept 'depletion layer' for ‘junction’	Not meet/come together/travel to Can say +ve and -ve charge carriers but not just charge carriers	1	
(ii)	$\begin{array}{rlr} V_{\mathrm{r}} & =12-5=7 \mathrm{~V} \\ I & =\frac{P}{V} \\ & =\frac{2 \cdot 2}{5}=0.44(\mathrm{~A}) & \\ R & =\frac{V}{I} & 1 / 2- \\ & =\frac{7}{0.44} & 1 / 2 \text { both equations } \\ & =\mathbf{1 6 \Omega} & 1 / 2 \\ & (15.9 \Omega) & \end{array}$ OR $\begin{aligned} & R=V^{2} / P=5^{2} / 2.2=11.4 \Omega \longrightarrow \quad \longrightarrow \quad=0.44(\mathrm{~A}) 1 / 2 \\ & I=P / V=2.2 / 5 \quad 12 / 0.44=27.3 \Omega \quad 1 / 2 \\ & R=V / I=12.2 \\ & R=27.3-11.4(1 / 2)=15.9 \Omega \quad 1 \end{aligned}$ $1 / 2$ for all 3 equations	anywhere 0 , on its own	$3+$	

2008 Physics - Higher			
Sample Answer and Mark Allocation	Notes	${ }_{\text {l }}^{\substack{\text { Iner } \\ \text { Margin } \\ \hline}}$	Outer Margin
(ii) Each horizontal line drawn below axis $1 / 2+1 / 2$ Each correct value $1 / 2+1 / 2$	Deduct $1 / 2$ if time values missing Accept - 3.8 If lines not horizontal 0 marks	2+	
(iii) moving up slope $m g \sin \theta /$ comp of weight and friction are in the same direction moving back down slope forces are in opposite directions or friction has changed direction OR by diagram:	Can show by calculation Use weight in place of component of W (eg weight down slope) - max 1 mark	2+	

2008 Physics - Higher			
Sample Answer and Mark Allocation	Notes	Inner Margin	Outer Margin
23. (a) $\text { (i) } \begin{aligned} & \frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}} \\ & \frac{2 \cdot 82 \times 10^{6}}{(19+273)}=\frac{P_{2}}{(5+273)} \\ & P_{2}=\mathbf{2 . 6 8} \times \mathbf{1 0}^{6} \mathbf{~ P a} \end{aligned}$		2	8
(ii) No change both mass and volume remain constant and density $=$ mass $/$ volume OR $\rho=m / V$ Possible alternative: (small) increase in density since volume less and mass constant 1 and density $=$ mass $/$ volume BUT MUST SAY 'CYLINDER CONTRACTS'	Need $1^{\text {st }}$ statement or 0 marks, then independent marks	$2 \bullet$	
(b) $\text { (i) } \quad \begin{aligned} m & =\rho V \\ m & =37.6 \times 0.03 \\ m & =\mathbf{1 . 1 3} \mathbf{~ k g} \end{aligned}$		2	
(ii) Fewer molecules/atoms/particles inside canister so fewer collisions/hits with walls per second (must say fewer molecules - not just fewer collisions only) any mention of slower movement etc - 0	Need to mention rate/time eg 'less often' Less force per collision 0 marks but smaller average force is fine	1+	
(iii) (gas stops escaping when) pressure inside $=$ pressure outside OR gas has reached atmospheric pressure OR because $1.01 \times 10^{5} \mathrm{~Pa}=$ atmospheric pressure	Pressures inside/outside balance No pressure difference inside/ outside	$1 \bullet$	

2008 Physics - Higher							
Sample Answer and Mark Allocation					Notes	Inner Margin	Outer Margin
24. (a)	(i)	4Ω		1	Deduct $1 / 2$ for missing or wrong unit	1	7
	(ii)	$\begin{aligned} I & =\frac{E}{R_{(\mathrm{T})}} \\ & =\frac{2 \times 1.5}{4} \\ & =\mathbf{0} .75 \mathrm{~A} \end{aligned}$	$\frac{V}{R}$	$1 / 2$ $1 / 2$ 1	Or consistent with (a)(i)	2	
	(iii) OR then OR	$\begin{aligned} P & =I^{2} R \\ & =0.75^{2} \times \\ & =\mathbf{2 . 0} \mathbf{W} \end{aligned}$ $\begin{aligned} V & =I R \\ & =0.75 \times \\ & =2.7 \mathrm{~V} \end{aligned}$ $\begin{aligned} P & =I V \\ & =0.75 \times 2 \\ & =2.0 \mathrm{~W} \end{aligned}$ $\begin{aligned} P & =V^{2} / R= \\ & =2 \cdot 0 \mathrm{~W} \end{aligned}$	$7^{2} / 3 \cdot 6$		Or consistent with (a)(i) \& (ii)	$2 \bullet$	
	Powe Curr $P=$ R (lo OR Powe t.p.d. $P=$ R (lo OR Powe Curr $P=$ t.p.d.	output is less is less R is constant output is less is less is constant s less is less is also less		$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$		$2+$	

2008 Physics - Higher	Notes	Inner Margin	Outer Margin
Sample Answer and Mark Allocation			
25. (a) Quantity of charge stored per volt OR Coulombs per volt OR ratio of charge to $\mathrm{p} . \mathrm{d} /$ voltage If say $C=\frac{Q}{V}$, must define Q and V to get mark	'1 Coulomb per Volt' gets 0	1	9

2008 Physics - Higher			
Sample Answer and Mark Allocation	Notes	Inner Margin	Outer Margin
(b) (i) $12-8 \cdot 6=\mathbf{3} \cdot \mathbf{4} \mathbf{V}$	Deduct $1 / 2$ for missing or wrong unit	$1 \bullet$	
$\text { (ii) } \quad \begin{aligned} R & =V / I \\ & =3 \cdot 4 / 0 \cdot 0016 \\ & =\mathbf{2 1 2 5} \boldsymbol{\Omega} \end{aligned}$	Or consistent with (b)(i)	2	
(iii) $V=12 \mathrm{~V}$ from diagram $\begin{aligned} & E=1 / 2 C V^{2} \\ & 10 \cdot 8 \times 10^{-3}=1 / 2 \times C \times 12^{2} \\ & C=\mathbf{0} \cdot \mathbf{0 0 0 1 5} \mathbf{~ F} \\ & \quad(150 \mu \mathrm{~F}) \end{aligned}$ OR $\begin{aligned} & E=1 / 2 Q V \\ & 10 \cdot 8 \times 10^{-3}=1 / 2 \times Q \times 12 \\ & Q=\mathbf{0} \cdot \mathbf{0 0 1 8}(C) \\ & E=1 / 2 \frac{Q^{2}}{C} \quad 1 / 2 \text { for both equations } \\ & 10 \cdot 8 \times 10^{-3}=1 / 2 \times \frac{0.0018^{2}}{C} 1 / 2 \text { substitution } \\ & C=\mathbf{0 . 0 0 0 1 5} \mathbf{~ F} \end{aligned}$	anywhere anywhere	3+	
(c) Time is less Circuit resistance is less Current/rate of flow of charge is greater Deduct $1 / 2$ for current/voltage 'through' capacitor	MUST say time/it is less or 0 marks eg 'capacitor charges faster’ 0 marks independent	$2 \bullet$	

2008 Physics - Higher		Notes	Inner Margin	OuterMargin
Sample Answer and Mark Allocation				
26. (a) $\begin{aligned} & \frac{R_{1}}{R_{2}}=\frac{R_{3}}{R_{4}} \\ & \frac{R(\operatorname{ldr})}{1.2}=\frac{6}{4} \end{aligned}$ If WP (eg subst. wrong), stop marking $R(\mathrm{ldr})=1.8(\mathrm{k} \Omega)$ $\begin{aligned} \text { From graph irradiance }= & \mathbf{0} \cdot \mathbf{4 8} \mathbf{~ W ~ m ~ m}^{-2} \\ & +/-0.02 \end{aligned}$	$1 / 2$ $1 / 2$	If stop here need unit for R If no equation/substitution and $R=1.8 \mathrm{k} \Omega$, max 2 marks Range 0.46-0.50 If bare $0.48 \mathrm{~W} \mathrm{~m}^{-2}$ then 1 mark only	3-	8

2008 Physics - Higher			
Sample Answer and Mark Allocation	Notes	Inner Margin	Outer Margin
(b) $\text { (i) } \begin{aligned} & \frac{2 \cdot 0}{2 \cdot 0+1 \cdot 2} \times 12 \\ & =\mathbf{7} \cdot \mathbf{5} \mathrm{V} \end{aligned}$ $1 / 2$ eqn, $1 / 2$ sub OR $\begin{align*} I & =\frac{V}{R_{t}} \\ & =\frac{12}{(1200+2000)}=0.00375 \tag{A}\\ V & =I R_{\text {ldr }} \\ & =0.00375 \times 2000 \\ & =7.5 \mathrm{~V} \end{align*}$ OR $\frac{V_{1}}{V_{2}}=\frac{R_{1}}{R_{2}} \text { and } \frac{7.5}{4.5}=\frac{2}{1.2} 1 / 2,=1.67$	Need final line or lose $1 / 2$ For formula used twice For substitution Deduct $1 / 2$ if no final line	1	
$\text { (ii) } \quad \begin{aligned} V_{\mathrm{O}} & =\left(V_{2}-V_{1}\right) \frac{R_{\mathrm{f}}}{R_{\mathrm{f}}} \\ & =(7 \cdot 2-7 \cdot 5) \times \frac{140}{20} \\ & =\mathbf{- 2 . 1} \mathbf{V} \end{aligned}$	Watch for V_{2} and V_{1} substituted correctly	2	
$\text { (iii) }\left[\begin{array}{ll} \text { Yellow LED is lit } & 1 \\ \text { Because it is forward biased } & 1 \\ & \\ \text { Need first statement }- \text { otherwise } 0 & \end{array}\right.$	MUST be consistent with (ii) ie if +2.1 V in (ii) then must state blue LED lit	$2 \bullet$	

2008 Physics - Higher			
Sample Answer and Mark Allocation	Notes	Inner Margin	Outer Margin
28. (a) $\begin{aligned} \text { Power } & =40 / 20=2 \mathrm{~mW} \\ P & =I \times A \\ 2 \times 10^{-3} & =I \times 8 \times 10^{-5} \\ I & =\mathbf{2 5} \mathrm{W} \mathrm{~m}^{-2} \end{aligned}$	Formula $1 / 2$ anywhere Deduct $1 / 2$ for prefix error To access last 2 marks, the only mistake allowed to be carried forward is a prefix/arith error eg $P=20 / 40=0.5$ Max $1 / 2$ for 'I' formula	3	5
(b) For point source (Values not equal) - not a point source Wrong conclusion, $\max 11 / 2$ Note: Values of $I d=0 \cdot 55,0 \cdot 56,0 \cdot 54$	OR Plot graph of I against $1 / d^{2}$ Max 1 if no line $1 / 2$	$2+$	

2008 Physics - Higher							
Sample Answer and Mark Allocation				Notes		Inner Margin	Outer Margin
(i) $\mathbf{0 . 0 3} \boldsymbol{\mu S v}$				$0.03 \mu \mathrm{~Gy}$	0 marks	1	
		$\frac{60}{0 \cdot 03}=\mathbf{2 0 0 0}$	1	OR consistent with (b)(i) - $1 / 2$ if any unit given		1	

[END OF MARKING INSTRUCTIONS]

