

2008 Physics

Higher

Finalised Marking Instructions

© Scottish Qualifications Authority 2008

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from the Assessment Materials Team, Dalkeith.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's Assessment Materials Team at Dalkeith may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Scottish Qualifications Authority

Detailed Marking Instructions – Higher Physics

1. General Marking Instructions

SQA published Physics General Marking Instructions in July 1999. Please refer to this publication when interpreting the detailed Marking Instructions.

2. Recording of marks

The following additional advice was given to markers regarding the recording of marks on candidate scripts.

- (a) The total mark awarded for each question should be recorded in the outer margin. The inner margin should be used to record the mark for each part of a question as indicated in the detailed marking instructions.
- (b) The fine divisions of marks shown in the detailed Marking Instructions may be recorded within the body of the script beside the candidate's response. Where such marks are shown they must total to the mark in the inner margin.
- (c) Numbers recorded on candidate scripts should always be the marks being awarded. Negative marks or marks to be subtracted should not be recorded on scripts.
- (d) The number out of which a mark is scored should **never** be recorded as a **denominator**. $(\frac{1}{2} \text{ mark will always mean one half mark and never 1 out of 2})$
- (e) Where square ruled paper is enclosed inside answer books it should be clearly indicated that this item has been considered by the marker. The mark awarded should be transferred to the script booklet inner margin and marked G.
- (f) The mark awarded for each question should be transferred to the grid on the back of the script. When the marker has completed marking the candidate's response to all questions, the marks for individual questions are added to give the total script mark.
- (g) The total mark awarded for an individual question may include an odd half mark $-\frac{1}{2}$. If there is an odd half mark in the total script mark, this is rounded up to the next whole number when transferred to the box on the front of the script.

3. Other Marking Symbols which may be used

TICK SCORE THROUGH	_ _	Correct point as detailed in scheme, includes data entry Any part of answer which is wrong. (For a block of wrong answers indicate zero marks.)
INVERTED VEE	_	A point omitted which has led to a loss of marks.
WAVY LINE	_	Under an answer worth marks which is wrong only
		because a wrong answer has been carried forward from a previous part.
"G"	-	Reference to a graph on separate paper. You MUST show a mark on the graph paper and the SAME mark on the script.
"G"	_	0 1 1 1

4. Marking Symbols which may <u>NOT</u> be used.

"WP"	-	Marks not awarded because an apparently correct
		answer was due to the use of "wrong physics".
"ARITH"	_	Candidate has made an arithmetic mistake.
"SIG FIGS" or "SF"	_	Candidate has made a mistake in the number of
		significant figures for a final answer.

<u> Physics – Marking Issues</u>

The current in a resistor is 1.5 amperes when the potential difference across it is 7.5 volts. Calculate the resistance of the resistor.

1.	Answers V=IR $7 \cdot 5=1 \cdot 5R$ R= $5 \cdot 0\Omega$	Mark +comment (½) (½) (1)	Issue Ideal Answer
2.	5·0Ω	(2) Correct Answer	GMI 1
3.	5.0	(1 ¹ / ₂) Unit missing	GMI 2(a)
4.	4.0Ω	(0) No evidence/Wrong Answer	GMI 1
5.	Ω	(0) No final answer	GMI 1
6.	$R = \frac{V}{I} = \frac{7 \cdot 5}{1 \cdot 5} = 4 \cdot 0\Omega$	(1 ¹ / ₂) Arithmetic error	GMI 7
7.	$R = \frac{V}{I} = 4.0 \Omega$	(¹ / ₂) Formula only	GMI 4 and 1
8.	$\mathbf{R} = \frac{V}{I} = \underline{\qquad} \mathbf{\Omega}$	(¹ / ₂) Formula only	GMI 4 and 1
9.	$\mathbf{R} = \frac{V}{I} = \frac{7 \cdot 5}{1 \cdot 5} = \underline{\qquad} \Omega$	(1) Formula + subs/No final answer	GMI 4 and 1
10.	$R = \frac{V}{I} = \frac{7 \cdot 5}{1 \cdot 5} = 4 \cdot 0$	(1) Formula + substitution	GMI 2(a) and 7
11.	$R = \frac{V}{I} = \frac{1.5}{7.5} = 5.0\Omega$	(¹ / ₂) Formula but wrong substitution	GMI 5
12.	$R = \frac{V}{I} = \frac{75}{1.5} = 5.0\Omega$	(¹ / ₂) Formula but wrong substitution	GMI 5
13.	$R = \frac{I}{V} = \frac{7 \cdot 5}{1 \cdot 5} = 5 \cdot 0\Omega$	(0) Wrong formula	GMI 5
14.	V=IR $7.5 = 1.5 \times R$ R= 0.2Ω	(1 ¹ / ₂) Arithmetic error	GMI 7
15.	V=IR R= $\frac{I}{V} = \frac{1.5}{7.5} = 0.2\Omega$	(¹ / ₂) Formula only	GMI 20

2008 Physics Higher

Marking scheme

Section A

1.	D	11.	А
2.	А	12.	В
3.	В	13.	Е
4.	С	14.	С
5.	D	15.	А
6.	С	16.	В
7.	D	17.	В
8.	E	18.	С
9.	E	19.	С
10.	D	20.	D

Sample A	2008 Physics – Higher nswer and Mark Allocation		Notes	Inner	Outer
	nswei and Mark Anocation	Notes	Margin	Margin	
21. (a)	$v^2 = u^2 + 2as$	1/2	watch for <i>u</i> , <i>v</i> correct way round	2	8
	$12^2 = 30^2 + (2 \times -9 \times s)$	1/2	watch for <i>a</i> (must be negative) otherwise max $\frac{1}{2}$ for formula		
	s = 42 m	1			
	OR				
	$t = \frac{v - u}{a}$				
	$=\frac{12-30}{-9}=2(s)$		$If \frac{12 - 30}{-9} = -2 s$		
	$s = ut + \frac{1}{2} a t^2$		and then substitute +2 treat as arith $-\frac{1}{2}$		
	$= (30 \times 2) + (\frac{1}{2} \times -9 \times 2^2)$	1/2			
	= 42 m	1			
		$\frac{1}{2}$ for both equations			
	OR				
	$t \neq \underbrace{\frac{v-u}{a} = 2(s)}$				
	$s = av. speed \times time$	$\frac{1}{2}$ both equations	Must be average speed,		
	= 21 × 2	1/2 both equations	otherwise 0		
	= 42 m	1			
(b)	Speed at Q is greater/faster Mass of car is greater/bigger Deceleration/acc ⁿ is less Since $a = F/m$ (and F is consta Can gain full marks by calcula		Must have 1 st statement or 0 marks Deduct ¹ / ₂ for weight/heavier in place of mass Don't accept acc ⁿ /dec ⁿ 'SLOWER'	2+	

		2008 Physics – Higher			_
Sample Ans	wer and	Mark Allocation	Notes	Inner Margin	Outer Margin
(c)	(i)	electrons and holes recombine at/in the junction (and energy is released) 1/0 do <u>not</u> accept 'depletion layer' for 'junction'	Not meet/come together/travel to Can say +ve <u>and</u> –ve charge carriers but not just charge carriers	1	
	(ii)	$V_{\rm r} = 12 - 5 = 7 \text{ V} \qquad \frac{1}{2} - \frac{1}{2} = \frac{P}{V}$ $= \frac{2 \cdot 2}{5} = 0 \cdot 44 \text{ (A)} \qquad \frac{1}{2}$ $R = \frac{V}{I} \qquad \frac{1}{2} \text{ both equations}$ $= \frac{7}{0 \cdot 44} \qquad \frac{1}{2}$ $= 16 \Omega \qquad 1$ $(15 \cdot 9 \Omega)$	- anywhere	3+	
		OR $R = \frac{V^2}{P} = \frac{5^2}{2.2} = 11.4 \Omega - \frac{1}{2}$ $I = \frac{P}{V} = 2.2/5 = 0.44 (A) \frac{1}{2}$ $R = \frac{V}{I} = \frac{12}{0.44} = 27.3 \Omega \frac{1}{2}$ $R = 27.3 - 11.4 (\frac{1}{2}) = 15.9 \Omega - 1$ $\frac{1}{2}$ for all 3 equations	• 0, on its own		

Samj	$= 40 \times 9.8 \times \sin 30$ $= 196 \text{ N}$ (ii) Balanced forces OR $F = mg \sin \theta + \text{Frictional force}$ $240 = 196 + F_{\text{f}}$ $F_{\text{f}} = 44 \text{ N}$				Notes	Inner Margin	Outer Margir
22.	(a)	(i)	$F = mg \sin\theta$	1/2		2	9
			$=40 \times 9.8 \times \sin 30$	1/2	$-\frac{1}{2}$ if g = 10		
			= 196 N	1			
		(ii)	OR >			2•	
			$F = mg\sin\theta + \text{Frictional force}$	1/2	or consistent with (a)(i)		
			$240 = 196 + F_{\rm f}$	1/2			
			$F_{\rm f} = 44 \; { m N}$	1			
	(b)	(i)	Constant ¹ / ₂ deceleration ¹ / ₂		ie $\frac{1}{2}$ for deceleration/-ve acc ⁿ then $\frac{1}{2}$ for constant/uniform	1•	
			Or give value of $a = -6 \text{ m s}^{-2}$	1	steadily		
			Constant deceleration	1			
			Constant acceleration	1/2			
			Constant negative acceleration	1			
			Constant acc^n down the slope	1			
			Acceleration down the slope	$\frac{1}{2}$			
			Velocity decreasing	1/2			
			Slowing down/speed decreasing	0			
			Slowing down/speed decreasing uniformly	1/2			
			Deceleration of - 6 m s ⁻²	$\frac{1}{1/2}$	- ¹ / ₂ for wrong or missing unit		
			Acceleration of -6 m s^{-2}	1	/2 for wrong or missing unit		
			Deceleration of 6 m s ⁻²	1			
			Velocity decreasing uniformly	1			
			Acceleration of 6 m s^{-2}	1/2			

2008 Physics – Higher		Innor	Outor
Sample Answer and Mark Allocation	Notes	Inner Margin	Outer Margin
(ii) acceleration/m s ⁻²	Deduct ¹ / ₂ if time values missing	2+	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Accept -3.8		
Each horizontal line drawn below axis $\frac{1}{2} + \frac{1}{2}$ Each correct value $\frac{1}{2} + \frac{1}{2}$	If lines not horizontal 0 marks		
(iii)			
moving up slope $mg\sin\theta/comp$ of weight and friction are in the same direction1moving back down slope forces are in opposite directions or friction has changed direction1OR by diagram:1	Can show by calculation Use weight in place of component of <i>W</i> (eg weight down slope) – max 1 mark	2+	
$mg \sin\theta \checkmark mg \sin\theta \checkmark friction$ friction 1 mark 1 mark			

~ -			2008 Physics – Higher			Tau	
Sample Answer and Mark Allocation			I Mark Allocation		Notes	Inner Margin	Outer Margin
23.	(a) (i) $\frac{P_1}{T_1} = \frac{P_2}{T_2}$ $2 \cdot 82 \times 10^6$ P_2	$\frac{P_1}{T_1} = \frac{P_2}{T_2}$	1/2		2	8	
			$\frac{2 \cdot 82 \times 10^6}{(19 + 273)} = \frac{P_2}{(5 + 273)}$	1/2			
			$P_2 = 2 \cdot 68 \times \mathbf{10^6} \ \mathbf{Pa}$	1			
		(ii)	No change both mass <u>and</u> volume remain constant and density = mass/volume OR $\rho = m/V$	¹ / ₂ 1 ¹ / ₂	Need 1 st statement or 0 marks, then independent marks	2•	
			Possible alternative: (small) increase in density since volume less <u>and</u> mass constant and density = mass/volume BUT MUST SAY 'CYLINDER CONTRACTS'	¹ / ₂ 1 ¹ / ₂			
	(b)	(i)	$m = \rho V$	1/2		2	
			$m = 37 \cdot 6 \times 0 \cdot 03$	$\frac{1}{2}$			
			$m = 1 \cdot 13 \text{ kg}$	1			
		(ii)	Fewer molecules/atoms/particles inside canister so fewer collisions/hits <u>with</u> walls per second	e 1	Need to mention rate/time eg 'less often'	1+	
			(must say fewer molecules – not just fewer collisions only) any mention of slower movement etc –	- 0	Less force per collision 0 marks but smaller <u>average force</u> is fine		
		(iii)	(gas stops escaping when) pressure inside = pressure outside		Pressures inside/outside balance	1•	
			OR				
			gas has reached atmospheric pressure	$\left \right\rangle_{1}$	No pressure difference inside/ outside		
			OR				
			because 1.01×10^5 Pa = atmospheric pressure				

Samp	ole Ans		2008 Physics – Higher 1 Mark Allocation		Notes	Inner Margin	Outer Margii
24.	(a)	(i)	4 Ω	1	Deduct ¹ / ₂ for missing or wrong unit	1	7
		(ii)	$I = \frac{E}{R_{(T)}}$ or $\frac{V}{R}$	1/2	Or consistent with (a)(i)	2	
			$=\frac{2\times1\cdot5}{4}$	1/2			
			$= 0 \cdot 75 \mathbf{A}$	1			
		(iii)	$P = I^2 R$	1/2	Or consistent with (a)(i) & (ii)	2•	
			$= 0 \cdot 75^2 \times 3 \cdot 6$ $= 2 \cdot 0 W$	¹ / ₂ 1			
		OR	V = I R = 0 \cdot 75 \times 3 \cdot 6 = 2 \cdot 7 V				
				¹ / ₂ both equations			
		then	P = I V = 0 \cdot 75 \times 2 \cdot 7 = 2 \cdot 0 W	½ 1			
		OR	$P = V^2 / R = 2 \cdot 7^2 / 3 \cdot 6$ $= 2 \cdot 0 W$	¹ /2 1			
	(b)	Curren $P = I^2$	to output is less of the test output is less $R^2 R$ d) is constant	1/2 1/2 1/2 1/2		2+	
		OR					
		t.p.d./	output is less V is less	1/2 1/2			
		$P = \frac{V}{R}$	- 2	1/2			
			d) is constant	1/2			
		OR					
			r is less nt is less V	1/2 1/2 1/2			
		t.p.d./	V is also less	1/2			

Sample Answer	2008 Physics – Higher and Mark Allocation	Notes	Inner Margin	Outer Margin
25. (a) O O If	I	'1 Coulomb per Volt' gets 0	1	9

		2008 Physics – Higher				
Sample Ans	swer and	I Mark Allocation		Notes	Inner Margin	Outer Margin
(b)	(i)	$12 - 8 \cdot 6 = 3 \cdot 4 \mathbf{V}$	1	Deduct ¹ / ₂ for missing or wrong unit	1•	
	(ii)	R = V/I	1/2	Or consistent with (b)(i)	2	
		$= 3 \cdot 4/0 \cdot 0016$	1/2			
		$=2125\Omega$	1			
	(iii)	V = 12 V from diagram	1-	— anywhere	3+	
		$E = \frac{1}{2} C V^2$	¹ /2-	— anywhere		
		$10.8 \times 10^{-3} = \frac{1}{2} \times C \times 12^{2}$	1/2			
		C = 0.00015 F (150 µF)	1			
		OR				
		$E = \frac{1}{2} Q V$				
		$10.8 \times 10^{-3} = \frac{1}{2} \times Q \times 12$	1			
		$Q = 0 \cdot 0018 \left(C \right)$				
		$E = \frac{1}{2} \frac{Q^2}{C}$ $\frac{1}{2}$ for both	n equations			
		$10 \cdot 8 \times 10^{-3} = \frac{1}{2} \times \frac{0 \cdot 0018^2}{C} \frac{1}{2} \text{ so}$	ubstitution			
		$C = 0 \cdot 00015 \ \mathbf{F}$	1			
(c)		s less t resistance is less nt/rate of flow of charge is greater	$\begin{pmatrix} 1\\ 1\\ 1\\ 1\\ 2 \end{pmatrix}$	MUST say time/it is less or 0 marks eg 'capacitor charges faster' 0 marks	2•	
	Deduc	t ¹ / ₂ for current/voltage 'through' of	capacitor	independent		

Samp	2008 Physics – Higher Sample Answer and Mark Allocation			Notes Inne Mar		Outer Margin
26.	(a)	$\frac{R_1}{R_2} = \frac{R_3}{R_4}$	¹ / ₂		3•	8
		$\frac{R(1dr)}{1.2} = \frac{6}{4}$	1/2			
		If WP (eg subst. wrong), stop marking				
		$R(\mathrm{ldr}) = 1.8 \mathrm{(k\Omega)}$	1	If stop here need unit for R		
				If no equation/substitution and $R = 1.8 \text{ k}\Omega$, max 2 marks		
		From graph irradiance = 0.48 W m^{-2} +/- 0.02	1	Range 0.46-0.50 If bare 0.48 W m ⁻² then 1 mark only		

2008 Physics – Higher Sample Answer and Mark Allocation	Notes	Inner Margin	Outer Margin
(b) (i) $\frac{2 \cdot 0}{2 \cdot 0 + 1 \cdot 2} \times 12$ ¹ / ₂ eqn, ¹ / ₂ sub = $7 \cdot 5 V$ OR $I = \frac{V}{R_t}$	Need final line or lose ¹ / ₂	1	
$= \frac{12}{(1200 + 2000)} = 0.00375 \text{ (A)} \frac{1}{2}$ $V = I R_{\text{ldr}}$ $= 0.00375 \times 2000 \frac{1}{2}$ $= 7.5 \text{ V}$ OR $\frac{V_1}{V_2} = \frac{R_1}{R_2} \text{ and } \frac{7.5}{4.5} = \frac{2}{1.2} \frac{1}{2} = 1.67 \frac{1}{2}$	For formula used twice For substitution Deduct ¹ / ₂ if no final line		
(ii) $V_{\rm O} = (V_2 - V_1) \frac{R_{\rm f}}{R_1} \qquad \frac{1}{2}$ $= (7 \cdot 2 - 7 \cdot 5) \times \frac{140}{20} \qquad \frac{1}{2}$ $= -2 \cdot 1 \mathbf{V} \qquad 1$	Watch for V_2 and V_1 substituted correctly	2	
(iii) Yellow LED is lit 1 Because it is <u>forward biased</u> 1 Need first statement – otherwise 0	$\frac{MUST}{ie if +2.1 V in (ii) then must}$ state blue LED lit	2•	

		2008 Physics – Higher			Ing	Oute
Sample Answer and Mark Allocation			Notes	Inner Margin	Outer Margin	
27. (a)	(i)	$\frac{\sin \theta_{a}}{\sin \theta_{g}} = n \text{ or } n = \frac{\sin \theta_{I}}{\sin \theta_{2}}$	¹ / ₂	$\frac{\sin \theta_{\rm a}}{\sin \theta_{\rm g}} = \frac{n_{\rm g}}{n_{\rm a}}$	2	6
		$\frac{\sin 28}{\sin \theta_g} = 1.61$	1/2			
		$\theta_{g} = 17^{\circ}$ deduct $\frac{1}{2}$ if no units	1			
	(ii)	$\lambda_{(\mathrm{air})} = rac{ u_{(\mathrm{air})}}{f}$	1/2		3+	
		$=\frac{3\times10^8}{4\cdot8\times10^{14}}$	1/2			
		$\left(=6\cdot 25\times 10^{-7}(\mathrm{m})\right)$		If stop here, max 1 mark		
		$\lambda_{\rm g} = \frac{\lambda_{\rm air}}{n}$ (anywhere)	1/2	Each formula ¹ / ₂		
		$=\frac{6\cdot25\times10^{-7}}{1\cdot61}$	1/2	If use value of red light from data sheet, max $\frac{1}{2}$ for second		
		$= 3 \cdot 88 \times 10^{-7} \mathrm{m}$	1	formula ie 633, 644, 656 nm		
		OR				
		$v_{\rm g} = \frac{v_{\rm a}}{n}$	1/2			
		$=\frac{3 \times 10^8}{1 \cdot 61} (= 1 \cdot 86 \times 10^{-8} (m s^{-1}))$	1/2	If use $2 \times 10^8 \text{ m s}^{-1}$, max $\frac{1}{2}$ for second formula		
		$\lambda_{\rm g} = \frac{v_{\rm g}}{f}$ anywhere	1/2			
		$=\frac{1\cdot86\times10^{8}}{4\cdot8\times10^{14}}$	1/2			
		$= 3 \cdot 88 \times 10^{-7} \mathrm{m} (3.875)$	1			
(b)		Ray will pass through point X	1/2	No justification, 0 marks WP in justification, 0 marks	1•	
		Refractive index for blue light > refractive index for red	¹ / ₂	irrelevant justification ¹ / ₂ (eg speed/frequency change) not 'bends' for justification		
		OR		juounounon		
		Blue refracted more				

Sample An	2008 Physics – Higher swer and Mark Allocation	Notes	Inner Margin	Outer Margin
28. (a)	Power = $40/20 = 2 \text{ mW}$ $P = I \times A$ $2 \times 10^{-3} = I \times 8 \times 10^{-5}$ $I = 25 \text{ W m}^{-2}$	To access last 2 marks, the only mistake allowed to be carried	3	5
(b)	For point source $I_1 d_1^2 = I_2 d_2^2$ OR $I d^2 = \text{constant}$ Anywhere – can be implied by calculations $I_1 d_1^2 = 1 \cdot 1 \times 0 \cdot 5^2$ $= 0 \cdot 28$ $I_2 d_2^2 = 0 \cdot 8 \times 0 \cdot 7^2$ $= 0 \cdot 39$ $I_3 d_3^2 = 0 \cdot 6 \times 0 \cdot 9^2$ $= 0 \cdot 49$ max 1 mark if only 2 values calculated	I Max 1 if no line $\frac{1/d^2}{d^2}$	2+	
	(Values not equal) – not a point source $\frac{1}{2}$ Wrong conclusion, max $1\frac{1}{2}$ Note:Values of $I d = 0.55, 0.56, 0.54$	statement $(I d^2 \text{ is not constant})$ Not a point source $\frac{1}{2}$ OR <i>I</i> not proportional to $1/d^2$		

Samp	ole Ans	2008 Physics – Higher swer and Mark Allocation	Notes	Inner Margin	Outer Margin	
29.	(a)	energy/ <i>E</i> / <i>hf</i>		Deduct ¹ / ₂ if origin not labelled No labels on axes, 0 marks Both axes must be labelled Line should be straight and through the origin	1	5
	(b)	E = hf anywhere = $6.63 \times 10^{-34} \times 6.1 \times 10^{14}$ (= 4.044×10^{-19})	1/2 1/2		3+	
		Photon energy = WF + E_k WF = $4.044 \times 10^{-19} - 6 \times 10^{-20}$	1/2 1/2	anywhere		
		= 3.44×10^{-19} J Accept 3×10^{-19} 3.4×10^{-19} 3.444×10^{-19} 3.0×10^{-19} deduct ¹ / ₂	1			
	(c)	Each photon still has same amount of energy	1	1 or 0 BUT, if followed by WP, 0 marks	1•	

2008 Physics – Higher						
Samp	Sample Answer and Mark Allocation			Notes	Inner Margin	Outer Margin
30.	(a)	(i)	12000 decays per second 1	Alternatives to 'decay':	1	5
			12 decays per second 0 marks	12000 <u>nucleii</u> disintegrating/ breaking down per second - <u>must</u>		
			12000 decays per minute 0 marks	be nucleii - not atoms/particles		
			12000 gamma rays/photons per s 0 marks			
			Number of decays per second 0 marks			
			1200 counts per second 0 marks			
		(ii)	aluminium – 2 half values $\frac{1}{2}$		2+	
			lead – 3 half values $\frac{1}{2}$			
			800 400 200 100 50 25	- This alone is 1 mark		
			count rate = 25 counts per second 1			
			If use 12000 (from part a) then	Units counts/s can be given here		
			12000 6000 3000 1500 75 37.5			
			award 1 mark			

2008 Physics – Higher Sample Answer and Mark Allocation	Notes	Inner Margin	Outer Margin	
(b) (i) 0.03 μSv	1	$0.03 \ \mu Gy$ 0 marks	1	
(ii) $\frac{60}{0.03} = 2000$	1	OR consistent with (b)(i) - ¹ / ₂ if any unit given	1	

[END OF MARKING INSTRUCTIONS]