2007 Physics

Intermediate 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2007

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from the Assessment Materials Team, Dalkeith.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's Assessment Materials Team at Dalkeith may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Physics - Marking Issues

The current in a resistor is 1.5 amperes when the potential difference across it is 7.5 volts. Calculate the resistance of the resistor.

1.	Answers	Mark + Comment	Issue
	$\mathrm{V}=\mathrm{IR}$	(1/2)	Ideal answer
	$7 \cdot 5=1 \cdot 5 \mathrm{R}$	(1/2)	
	$\mathrm{R}=5.0 \Omega$	(1)	
2.	$5 \cdot 0 \Omega$	(2) Correct answer	GMI 1
3.	$5 \cdot 0$	(11/2) Unit missing	GMI 2 (a)
4.	$4 \cdot 0 \Omega$	(0) No evidence/wrong answer	GMI 1
5.	$\underline{\Omega}$	(0) No final answer	GMI 1
6.	$\mathrm{R}=\frac{V}{I}=\frac{7 \cdot 5}{1 \cdot 5}=4 \cdot 0 \Omega$	(11/2) Arithmetic error	GMI 7
7.	$\mathrm{R}=\frac{V}{I}=4 \cdot 0 \Omega$	(112) Formula only	GMI 4 and 1
8.	$\mathrm{R}=\frac{V}{I}=\square \Omega$	(112) Formula only	GMI 4 and 1
9.	$\mathrm{R}=\frac{V}{I}=\frac{7 \cdot 5}{1 \cdot 5}=$	(1) Formula + subs/No final answer	GMI 4 and 1
10.	$\mathrm{R}=\frac{V}{I}=\frac{7 \cdot 5}{1 \cdot 5}=4 \cdot 0$	(1) Formula + substitution	GMI 2 (a) and 7
11.	$\mathrm{R}=\frac{V}{I}=\frac{1 \cdot 5}{7 \cdot 5}=5 \cdot 0 \Omega$	(1/2) Formula but wrong substitution	GMI 5
12.	$\mathrm{R}=\frac{V}{I}=\frac{75}{1 \cdot 5}=5 \cdot 0 \Omega$	(1/2) Formula but wrong substitution	GMI 5
13.	$\mathrm{R}=\frac{I}{V}=\frac{7 \cdot 5}{1 \cdot 5}=5 \cdot 0 \Omega$	(0) Wrong formula	GMI 5
14.	$\mathrm{V}=\mathrm{IR} \quad 7 \cdot 5=1.5 \times \mathrm{R} \quad \mathrm{R}=0.2 \Omega$	(112) Arithmetic error	GMI 7
15.	$\mathrm{V}=\mathrm{IR}$		
	$\mathrm{R}=\frac{I}{V}=\frac{1 \cdot 5}{7 \cdot 5}=0 \cdot 2 \Omega$	(112) Formula only	GMI 20

2007 Physics Intermediate 2

Marking schemeSection A1. E 11. D2. B12. C3. E13. B4. B14. A5. A15. C6. B16. D7. C17. C
2. D 18. D9. B19. E10. D20. C

2007 Physics Intermediate 2			
Sample Answer and Mark Allocation		Notes	Marks
21. (a) $\text { (i) } \quad \begin{aligned} & \mathrm{d}=\mathrm{vt} \\ & 3.2=\mathrm{v} \times 20 \\ & \mathrm{v}=0.16 \mathrm{~m} / \mathrm{s} \end{aligned}$ (ii) $\begin{aligned} & \mathrm{W}=\mathrm{mg} \\ & \mathrm{~W}=60 \times 10 \\ & \mathrm{~W}=600 \mathrm{~N} \end{aligned}$ (iii) $\begin{aligned} & \mathrm{E}_{\mathrm{P}}=\mathrm{mgh} \\ & \mathrm{E}_{\mathrm{P}}=60 \times 10 \times 3.2 \\ & \mathrm{E}_{\mathrm{P}}=1920 \mathrm{~J} \end{aligned}$	(1/2) (1/2) (1) (1/2) (1/2) (1) (1/2) (1/2) (1)		2
(b) (ii) (actual speed) less air resistance during fall or not all E_{P} changes to E_{K}	(1/2) (1/2) (1) (1) (1)		2
			Total 10

Sample Answer and Mark Allocation		Notes	Marks
23. (a) (i) $\begin{aligned} & \mathrm{E}_{\mathrm{H}}=\mathrm{cm} \mathrm{\Delta T} \Delta \mathrm{~m} \\ & \mathrm{E}_{\mathrm{H}}=4180 \times 10 \times 80 \\ & \mathrm{E}_{\mathrm{H}}=3.34 \times 10^{6} \mathrm{~J} \end{aligned}$ (ii) $\begin{aligned} & \mathrm{E}=\mathrm{Pt} \\ & 3.34 \times 10^{6}=2.5 \times 10^{3} \times \mathrm{t} \\ & \mathrm{t}=1340 \mathrm{~s} \end{aligned}$ (iii) not all E_{H} used to heat water OR E_{H} lost to surroundings	(1/2) (1/2) (1) (1/2) (1/2) (1) (1)		2 2 1
(b) $\begin{aligned} & \mathrm{P}=\mathrm{IV} \\ & 2 \cdot 5 \times 10^{3}=\mathrm{I} \times 230 \\ & \mathrm{I}=10 \cdot 9 \mathrm{~A} \end{aligned}$	$\begin{gathered} (1 / 2) \\ (1 / 2) \\ (1) \end{gathered}$		2
$\text { (c) } \quad \begin{aligned} & \mathrm{E}_{\mathrm{H}}=1 \mathrm{~m} \\ & \\ & \mathrm{E}_{\mathrm{H}}=22.6 \times 10^{5} \times 1.2 \\ & \mathrm{E}_{\mathrm{H}}=2.71 \times 10^{6} \mathrm{~J} \end{aligned}$	$\begin{aligned} & (1 / 2) \\ & (1 / 2) \end{aligned}$ (1)		2
			Total 9

Sample Answer and Mark Allocation		Notes	Marks
25. (a) (i) $I R=$ infrared (ii) both arrive at the same time both travel at the same speed (or speed of light or $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$)	(1) (1) (1)		2
$\text { (b) } \quad \begin{aligned} & \mathrm{Q}=\mathrm{It} \\ & \mathrm{Q}=3 \times 2 \times 60 \times 60 \\ & \mathrm{Q}=21600 \mathrm{C} \end{aligned}$	(1/2) (1/2) (1)		2
$\text { (c) } \quad \begin{aligned} & \mathrm{V}_{\mathrm{R}}=8-2=6 \mathrm{~V} \\ & \mathrm{~V}=\mathrm{IR} \\ & 6=15 \times 10^{-3} \times \mathrm{R} \\ & \mathrm{R}=400 \Omega \end{aligned}$	$\begin{array}{r} (1) \\ (1 / 2) \\ (1 / 2) \\ (1) \\ (1) \end{array}$		3
			Total 8

$\left.\begin{array}{|ll|l|c|}\hline \text { Sample Answer and Mark Allocation } & \text { Notes } & \text { Marks } \\ \hline \text { 26. (a) } \begin{array}{ll}\text { thermistor } & \text { (1) }\end{array} & 1 \\ \hline & \begin{array}{ll}\text { (b) } \begin{array}{l}\text { as temperature drops, voltage across } \\ \text { thermistor rises or resistance of thermistor rises } \\ \text { when voltage goes above certain level MOSFET }\end{array} & (1) \\ \text { switches on } \\ \text { relay switch closes (and heater circuit is completed) }\end{array} & (1)\end{array}\right)$

Sample Answer and Mark Allocation		Notes	Marks
27. (a) (i) refraction (ii) reflection (iii) red	(1) (1) (1)		1 1 1
(b) two forces: air resistance and weight balanced	(1) (1)		2
			Total 5

Sample Answer and Mark Allocation		Notes	Marks
28. (a) (i) (waveform) Q (ii) (waveform) Q	(1) (1)		1 1
(b) $\text { (i) } \quad \begin{aligned} & \mathrm{v}=\mathrm{f} \lambda \\ & 340=2 \times 10^{3} \times \lambda \\ & \\ & \lambda=0.17 \mathrm{~m} \end{aligned}$ $\text { (ii) } \quad \begin{aligned} & \mathrm{d}=\mathrm{vt} \\ & 20.4=340 \times \mathrm{t} \\ & \mathrm{t}=0.06 \mathrm{~s} \end{aligned}$	(1/2) (1/2) (1) (1/2) (1/2) (1)		2
(c) (wavelength) decreased speed of sound slower	(1) (1)		2
			Total 8

Sample Answer and Mark Allocation		Notes	Marks
29. (a) $\begin{aligned} & \mathrm{E}=\mathrm{D} \mathrm{~m} \\ & \mathrm{E}=3 \times 50 \times 10^{-6} \times 6 \\ & \mathrm{E}=9 \times 10^{-4} \mathrm{~J} \end{aligned}$	(1/2) (1/2) (1)		2
(b) lead absorbs X-rays or lead shields leg from X-rays	(1)		1
(c) type of radiation or organ/type of tissue	(1)		1
			Total 4

Sample Answer and Mark Allocation		Notes	Marks
30. (a) (i) loss or gain of electrons from atom or molecule (ii) alpha greatest ionisation (density) (iii) source Y long half-life but short range	(1) (1) (1) (1) (1)		2 2
(b) $\text { (i) } \quad \begin{aligned} \mathrm{V} & =\mathrm{IR} \\ 9 & =30 \times 10^{-3} \times \mathrm{R} \\ \mathrm{R} & =300 \Omega \end{aligned}$ (ii) electrical to sound	(1/2) (1/2) (1) (1)		1
			Total 8

Sample Answer and Mark Allocation			Notes	Marks
31. (a)	cosmic rays radon gas or other correct answers	(1) (1)		2
	$\begin{aligned} & \mathrm{N}=\mathrm{At} \\ & 4=\mathrm{A} \times 10 \\ & \mathrm{~A}=0 \cdot 4 \mathrm{~Bq} \end{aligned}$	$\begin{gathered} (1 / 2) \\ (1 / 2) \\ (1) \end{gathered}$		2
	168 --- 84 in 4 minutes or 120 --- 60 or other pair of values half-life $=4$ minutes	(1) (1)		2
				Total 6

[END OF MARKING INSTRUCTIONS]

