2006 Physics

Intermediate 2

Finalised Marking Instructions

© The Scottish Qualifications Authority 2006

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from the Assessment Materials Team, Dalkeith.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's Assessment Materials Team at Dalkeith may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Physics - Marking Issues

The current in a resistor is 1.5 amperes when the potential difference across it is 7.5 volts. Calculate the resistance of the resistor.

1.	Answers	Mark + Comment	Issue
	$\mathrm{V}=\mathrm{IR}$	(1/2)	Ideal answer
	$7 \cdot 5=1 \cdot 5 \mathrm{R}$	(1/2)	
	$\mathrm{R}=5.0 \Omega$	(1)	
2.	$5 \cdot 0 \Omega$	(2) Correct answer	GMI 1
3.	$5 \cdot 0$	(11/2) Unit missing	GMI 2 (a)
4.	$4 \cdot 0 \Omega$	(0) No evidence/wrong answer	GMI 1
5.	$\underline{\Omega}$	(0) No final answer	GMI 1
6.	$\mathrm{R}=\frac{V}{I}=\frac{7 \cdot 5}{1 \cdot 5}=4 \cdot 0 \Omega$	(11/2) Arithmetic error	GMI 7
7.	$\mathrm{R}=\frac{V}{I}=4 \cdot 0 \Omega$	(112) Formula only	GMI 4 and 1
8.	$\mathrm{R}=\frac{V}{I}=\square \Omega$	(112) Formula only	GMI 4 and 1
9.	$\mathrm{R}=\frac{V}{I}=\frac{7 \cdot 5}{1 \cdot 5}=$	(1) Formula + subs/No final answer	GMI 4 and 1
10.	$\mathrm{R}=\frac{V}{I}=\frac{7 \cdot 5}{1 \cdot 5}=4 \cdot 0$	(1) Formula + substitution	GMI 2 (a) and 7
11.	$\mathrm{R}=\frac{V}{I}=\frac{1 \cdot 5}{7 \cdot 5}=5 \cdot 0 \Omega$	(1/2) Formula but wrong substitution	GMI 5
12.	$\mathrm{R}=\frac{V}{I}=\frac{75}{1 \cdot 5}=5 \cdot 0 \Omega$	(1/2) Formula but wrong substitution	GMI 5
13.	$\mathrm{R}=\frac{I}{V}=\frac{7 \cdot 5}{1 \cdot 5}=5 \cdot 0 \Omega$	(0) Wrong formula	GMI 5
14.	$\mathrm{V}=\mathrm{IR} \quad 7 \cdot 5=1.5 \times \mathrm{R} \quad \mathrm{R}=0.2 \Omega$	(112) Arithmetic error	GMI 7
15.	$\mathrm{V}=\mathrm{IR}$		
	$\mathrm{R}=\frac{I}{V}=\frac{1 \cdot 5}{7 \cdot 5}=0 \cdot 2 \Omega$	(112) Formula only	GMI 20

2006 Physics Intermediate 2

Marking scheme

Section A

1. C
2. B
3. E
4. A
5. C
6. D
7. E
8. C
9. D
10. E
11. B
12. C
13. A
14. B
15. B
16. C
17. D
18. B
19. D
20. D

2006 Physics Intermediate 2			
Sample Answer and Mark Allocation		Notes	Marks
$\text { 21. (a) } \begin{aligned} \mathrm{E}_{\mathrm{P}} & =\mathrm{mgh} \\ & =90 \times 10 \times 3 \\ & =2700 \mathrm{~J} \end{aligned}$	$\begin{aligned} & (1 / 2) \\ & (1 / 2) \end{aligned}$ (1)		2
(b) $\begin{aligned} \mathrm{E}_{\mathrm{K}} & =1 / 2 \mathrm{~m} \mathrm{v} \\ & =1 / 2 \times 90 \times 8^{2} \\ & =2880 \mathrm{~J} \end{aligned}$	(1/2) (1/2) (1)		2
(c) Extra energy has been supplied by (the work done) pedalling	(1) (1)		2
(d) (i) decreases (ii) friction increases OR fatigue OR less force by cyclist	(1) (1)		1 1
			Total 8

Sample Answer and Mark Allocation	Notes	Marks
22. (a) $\begin{align*} \mathrm{F}^{2} & =\left(8 \times 10^{6}\right)^{2}+\left(6 \times 10^{6}\right)^{2} \tag{1/2}\\ \mathrm{~F} & =\sqrt{\left(1 \cdot 0 \times 10^{14}\right)} \tag{1/2}\\ & =1 \cdot 0 \times 10^{7} \mathrm{~N} \tag{1} \end{align*}$ OR by scale diagram diagram (1) all vectors accurate to the same scale ($1 / 2$) evidence of measurement of resultant and scaling to answer ($1 / 2$)		2
(b) $\begin{align*} \mathrm{F} & =\mathrm{ma} \tag{1/2}\\ 1 \cdot 0 \times 10^{7} & =7.5 \times 10^{8} \times \mathrm{a} \tag{1/2}\\ \mathrm{a} & =0.013 \mathrm{~m} / \mathrm{s}^{2} \tag{1} \end{align*}$ (range of significant figures is from 0.01 to 0.01333)		2
(c) (i) $\mathrm{f}=\frac{1}{16}=0.0625 \mathrm{~Hz}$ (ii) $\begin{aligned} \mathrm{v} & =\mathrm{f} \lambda \\ 12 \cdot 5 & =0 \cdot 0625 \times \lambda \\ \lambda & =200 \mathrm{~m} \end{aligned}$	$1 / 2$ unit deduction	2
		Total 7

Sample Answer and Mark Allocation		Notes	Marks
23. (a) $\begin{aligned} \text { momentum } & =\mathrm{m} \mathrm{v} \\ & =110 \times 4.8 \\ & =528 \mathrm{~kg} \mathrm{~m} / \mathrm{s} \end{aligned}$	$\begin{aligned} & (1 / 2) \\ & (1 / 2) \end{aligned}$ (1)		2
(b) momentum before $=$ momentum after $\begin{aligned} 60 \mathrm{xv} & =528 \\ \mathrm{v} & =8 \cdot 8 \mathrm{~m} / \mathrm{s} \end{aligned}$	$\begin{aligned} & (1 / 2) \\ & (1 / 2) \end{aligned}$ (1)		2
(c) (i) $\begin{aligned} \mathrm{d} & =\mathrm{vt} \\ & =4.8 \times 0.65 \\ & =3.12 \mathrm{~m} \end{aligned}$ $\text { (ii) } \begin{aligned} \mathrm{a} & =\frac{\mathrm{v}-\mathrm{u}}{\mathrm{t}} \\ 10 & =\frac{\mathrm{v}-0}{0.65} \\ \mathrm{v} & =6.5 \mathrm{~m} / \mathrm{s} \end{aligned}$	(1/2) (1/2) (1) (1/2) (1/2) (1)		2
			Total 8

Sample Answer and Mark Allocation		Notes	Marks
24. (a)	$\begin{align*} \mathrm{E}_{\mathrm{H}} & =\mathrm{cm} \mathrm{\Delta T} \\ & =4180 \times 15 \times 6 \tag{1/2}\\ & =376200 \mathrm{~J} \tag{1} \end{align*}$		2
(b)	$\begin{align*} \mathrm{E}_{\mathrm{H}} & =\mathrm{cm} \Delta \mathrm{~T} \tag{1/2}\\ 376200 & =480 \times 0.75 \times \Delta \mathrm{T} \tag{1/2}\\ \Delta \mathrm{~T} & =1045\left({ }^{\circ} \mathrm{C}\right) \tag{1/2} \end{align*}$ initial temperature of iron: $\begin{align*} & =1045+23 \tag{1/2}\\ & =1068^{\circ} \mathrm{C} \tag{1} \end{align*}$		3
	all heat energy retained within system OR no heat lost to surroundings OR no steam created		1
	greater value of c less Less heat required per degree temperature rise OR greater temperature rise for same energy input Note: first mark only available if explanation attempted		2
			Total 8

Sample Answer and Mark Allocation		Notes	Marks
25. (a) $\begin{aligned} & \frac{N_{P}}{N_{S}}=\frac{V_{P}}{V_{S}} \\ & \frac{N_{P}}{400}=\frac{25000}{2000} \\ & \mathrm{~N}_{\mathrm{P}}=5000 \end{aligned}$	$(1 / 2)$ (1/2) (1)		2
(b) $\begin{aligned} \mathrm{P} & =\mathrm{IV} \\ 7 \cdot 0 \times 10^{6} & =\mathrm{I} \times 2000 \\ \mathrm{I} & =3500 \mathrm{~A} \end{aligned}$	$\begin{gathered} (1 / 2) \\ (1 / 2) \\ (1) \end{gathered}$		2
(c) $\begin{aligned} \mathrm{E}_{\mathrm{W}} & =\mathrm{Pt} \\ & =7.0 \times 10^{6} \times 15 \\ & =1.05 \times 10^{8}(\mathrm{~J}) \\ -\mathrm{E}_{\mathrm{W}} & =\mathrm{F} \mathrm{~d} \\ 1.05 \times 10^{8} & =\mathrm{F} \times 540 \\ \mathrm{~F} & =1.94 \times 10^{5} \mathrm{~N} \end{aligned}$ OR $\begin{aligned} & 540=\mathrm{v} \times 15 \\ & \mathrm{v}=36(\mathrm{~m} / \mathrm{s}) \\ & \mathrm{P}=\mathrm{Fv} \\ & 7 \times 10^{6}=\mathrm{F} \times 36 \\ & \mathrm{~F}=1 \cdot 94 \times 10^{5} \mathrm{~N} \end{aligned}$ (range of significant figures for either method is from 2 to $1 \cdot 944 \times 10^{5}$)	(1/2) (1/2) (1/2) (1/2) (1) (1/2) (1/2) (1/2) (1/2) (1)		3
			Total 7

Sample Answer and Mark Allocation		Notes	Marks
26. (a) in d.c. electrons/charges move in one direction only in a.c. direction of movement of electrons/ charges continually ($1 / 2$) reverses ($1 / 2$)	(1)		2
(b) (i) 10 V (ii) 6 V (iii) 4 V Note: $1 / 2$ unit deduction in each case	(1) (1) (1)		
(c) less	(1)		1
(d) Q (only)	(1)		1
(e) P and Q (only)	(1)		1
			Total 8

Sample Answer and Mark Allocation	Notes	Marks
27. (a) 225 (units) accept range 220-230		1
(b) so that meter measures the same brightness as the solar cell receives		1
(c) four cells in series voltmeter across them (1)		1
(d) (i) (NPN) transistor (ii) (increasing brightness), solar cell voltage increases when voltage reaches 0.7 V OR when light meter reading reaches 225 (units) transistor switches on		1 3
		Total 7

Sample Answer and Mark Allocation	Notes	Marks
28. (a) (i) 600 mm ($1 / 2$ unit deduction) (ii) doubled OR larger OR magnified (iii) inverted OR upside down OR opposite way up (1)		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
(b) brought closer to lens OR moved leftwards (1)		1
$\text { (c) } \quad \begin{align*} \mathrm{P} & =\frac{1}{f} \tag{1/2}\\ & =\frac{1}{0 \cdot 2} \tag{1/2}\\ & =(+) 5 \mathrm{D} \tag{1} \end{align*}$		2
(d) (lens-film distance) increased OR lens moved away from film		1
		Total 7

Sample Answer and Mark Allocation	Notes	Marks
29. (a) (i) $35^{\circ}(1 / 2$ unit deduction) (ii) same as candidate's answer to (i) provided angle is less than 90° ($1 / 2$ unit deduction)		
(b) (i) total internal reflection (ii) any angle less than 45° angle of incidence must be more than critical		2
Note: first mark only available if explanation attempted		Total 5

Sample Answer and Mark Allocation		Notes	Marks
30. (a) (i) 2 protons +2 neutrons OR helium nucleus (ii) (1) electron	(1) (1)		1 1
(b) (i) removal or addition of electron(s) from atom/molecule (ii) alpha increased distance ($1 / 2$) fewer alphas reach grid OR more alphas absorbed (1/2)	(1) (1)		1 2
(c) $\begin{aligned} \mathrm{Q} & =\mathrm{It} \\ & =2.9 \times 10^{-7} \times 60 \\ & =1.74 \times 10^{-5}(\mathrm{C}) \end{aligned}$ for one spark: $\begin{aligned} \mathrm{Q} & =\frac{1.74 \times 10^{-5}}{87} \\ & =2.0 \times 10^{-7} \mathrm{C} \end{aligned}$	(1/2) (1/2) (1/2) (1/2) (1)		3
			Total 8

Sample Answer and Mark Allocation				Notes	Marks
31. (a)	The time taken for th	tivity to halve	(1)		1
(b)	Time (days) 0 $8 \cdot 1$ $16 \cdot 2$ $24 \cdot 3$ $32 \cdot 4$ $40 \cdot 5$ working answer: $40 \cdot 5$	Activity $(\mathrm{MBq}$ $56 \cdot 0$ 28.0 14.0 7.0 3.5 1.75	(1) (1)		2
	Iodine 135 activity remains high returns to safer level	hours next day	(1) (1/2) (1/2)		2
	Iodine 127 not radioactive		(1) (1)		2
					Total 7

[END OF MARKING INSTRUCTIONS]

