

2003 Physics

Advanced Higher

Finalised Marking Instructions

Scottish Qualifications Authority Detailed Marking Instructions — Advanced Higher Physics 2003

1. General Marking Instructions

SQA published *Physics General Marking Instructions* in July 1999. Please refer to this publication when interpreting the detailed marking instructions that follow.

2. **Recording of marks**

The following additional advice was given to markers regarding the recording of marks on candidate scripts.

- (a) The total mark awarded for each question should be recorded in the outer margin. The inner margin should be used to record the mark for each part of a question as indicated in the detailed marking instructions.
- (b) The fine divisions of marks shown in the detailed marking scheme may be recorded within the body of the script beside the candidate's response. Where such marks are shown they must total to the mark in the inner margin.
- (c) Numbers recorded on candidate scripts should always be the marks being awarded. Negative marks or marks to be subtracted should not be recorded on scripts.
- (d) The number out of which a mark is scored should **never** be recorded as a **denominator**. (¹/₂ mark will always mean one half mark and never 1 out of 2)
- (e) Where square ruled paper is enclosed inside answer books it should be clearly indicated that this item has been considered by the marker. The mark awarded should be transferred to the script booklet inner margin and marked **G**.
- (f) The mark awarded for each question should be transferred to the grid on the back of the script. When the marker has completed marking the candidate's response to all questions, the marks for individual questions are added to give the total script mark.
- (g) The total mark awarded for an individual question may include an odd half mark $\frac{1}{2}$. If there is an odd half mark in the total script mark, this is rounded up to the next whole number when transferred to the box on the front of the script.

2003 Physics Advanced Higher				
Sample Answers and Mark Allocat	tion	Notes	Maı	rks
1. (a)(i) $s = ut + \frac{1}{2}at^{2}$ (u = 0) $a = \frac{1}{2}t^{2}at^{2}$	(¹ / ₂)			13
$a = \frac{2s/t^2}{a}$	(72)		1	
(ii) t = 2.45(s)	(1/2)			
$a = \underbrace{(2 \times 3.54)}_{2.45^2}$				
$a = 1.18 \mathrm{m s^{-2}}$	(1/2)		1	
(iii) Uncertainty = $(\pm) \frac{t_{\text{max}} - t_{\text{min}}}{n}$	(1/2)	Deduct ('/2) if % wrongly calculated.		
$=(\pm)\frac{2\cdot 65 - 2\cdot 29}{6}$	(1/2)			
$= (\pm) \ 0.06 \text{ s}$	(1)			
(= ± 2·45%)			2	
(iv) TIME % Uncertainty = $0.06/2.45 = 2.45\%$ % Uncertainty in $t^2 = 4.9\%$	(¹ /2) (¹ /2)	Accept 2·4% Accept 5%		
DISTANCE % Uncertainty = $0.01/3.54 = 0.28\%$	(1/2)			
: ignore				
Uncertainty in $a = 4.9\%$	(1/2)	Accept 5%	2	
(v)				
Uncertainty = $\frac{1 \cdot 18 \times 4 \cdot 9}{100} = 0.06$	(1/2)			
$a = (1.18 \pm 0.06)(\mathrm{ms^{-2}})$	(1/2)			
			1	

	2003 Physics Advanced Higher				
Sa	mple Answers and Mark Allocation	0 n	Notes	Ma	rks
1. (b)(i)	$a = \frac{v^2}{r}$	(1/2)			
	$a = \frac{36}{4 \cdot 0}$	(¹ / ₂)			
	$a = 9.0 \mathrm{ms^{-2}}$	(1)		2	
(ii)	2				
	$F_{\text{radial}} = \frac{mv^2}{r}$	(1/2)			
	$F_{\text{radial}} = 2.5 \times \frac{6^2}{4}$	(¹ / ₂)			
	$F_{\text{radial}} = 22.5 \text{ (N)}$	(1/2)			
(Rac (or e	lial) force sufficient to provide this equivalent)	(1/2)		2	
(c)	Component of reaction now acts radially	(1)	Diagram acceptable for first mark.		
	Central force increased	(1)			
			F _{central} F _{reaction}		
				2	

		2003 Physics Advanced High	er			
	San	nple Answers and Mark Allo	cation	Notes	Ma	arks
2.	(a)	$I = mr^2$	(1)		1	13
	(b)	$I = 1.5 \times 0.20^{2}$ (= 0.060 kg m ²)	(1)		1	
	(c)(i) Resul	$T = Fr (1/2) = (25 \times 4 \times 10^{-3}) (1/2)$ ltant $T = (25 \times 4 \times 10^{-3}) - 0.070$ = 0.030 N m	(¹ /2) (¹ /2) (¹ /2)		2	-
	(ii)	$T = I\alpha$ $\alpha = 0.030/0.060$ $\alpha = 0.50 \text{ rad s}^{-2}$	(¹ /2) (¹ /2) (1)		2	-
	(iii)	N° of revolutions = cord length/circumference = $0.5/(2 \times \pi \times 4 \times 10^{-3})$ = 19.9	(¹ /2) (¹ /2) (¹ /2)	Accept $\frac{0.5}{4 \times 10^{-3}} = 125 \text{ rad}$ (2)		
		$\theta = N^{\circ} \text{ of revolutions} \times 2\pi$ $\theta = 19.9 \times 2\pi$ $\theta = 125 \text{ rad}$	(1/2)	Accept 126 rad if No of revolutions = 20	2	
	(iv)	$\omega^{2} = \omega_{o}^{2} + 2 \alpha \theta$ $\omega^{2} = 0 + 2 \times 0.5 \times 125$ $\omega = 11 \text{ rad s}^{-1}$	(¹ /2) (¹ /2) (1)	$\theta = \omega_0 t + \frac{1}{2} \alpha t^2$ $(\omega = \omega_0 + \alpha t)$ Both equations required for this (1/2) $t = 22 \cdot 4 \text{ s}$ (1/2) $\omega = 11 \text{ rad s}^{-1}$ (1) Accept 11 \cdot 2 \text{ rad s}^{-1}	2	
	(v)	$\alpha = T/I$ $\alpha = (-)0.07/0.06$ $\alpha = (-)1.2 \text{ (rad s}^{-2})$	(¹ / ₂) (¹ / ₂)	Accept 1·17 rad s ⁻²		
		$\alpha = (\omega - \omega_{o})/t$ $t = (4 \cdot 2 - 11)/-1 \cdot 2$ $t = 5 \cdot 7 \text{ s}$	(¹ / ₂) (¹ / ₂) (1)	$a = (\omega_o - \omega)/t$ (0)WP -(¹ / ₂) for sign error 11.2 taken, $t = 5.8$ s $\alpha = 1.17$, $t = 5.98$ s	2	
		(11.2 - 4.2) used r	nax – (1¹/₂)	$\alpha = 1.17, \iota = 5.988$ All acceptable	3	

2003 Physics Advanced Higher			
Sample Answers and Mark Allocation	n	Notes	Marks
3. (a)	<u>n</u>	Notes Shape (1) Direction (1/2) Correct lack of symmetry (1/2)	Marks 8
			2
(b)(i) (A) $E_{\rm p} = -(GM_1M_2)/r$	(1/2)	No negative –WP (0)	
$=\frac{\binom{1}{2}}{\frac{-(6\cdot67\times10^{-11}\times7\cdot3\times10^{22}\times15)}{1\cdot7\times10^{6}}}$	5)	$G = 6.67 \times 10^{-11} \qquad (^{1}/_{2})$ $M = 7.3 \times 10^{22} \qquad (^{1}/_{2})$	
$= -4.3 \times 10^{7} \text{ J}$ (B) $E_{p} = \frac{-(6.67 \times 10^{-11} \times 7.3 \times 10^{22} \times 15)}{2.2 \times 10^{6}}$	(¹ / ₂) <u>5</u>) (¹ / ₂)		
$= -3 \cdot 3 \times 10^7 \mathrm{J}$	(1/2)		3
(b)(ii) $E_{\rm k} = (-3 \cdot 3 \times 10^7) - (-4 \cdot 3 \times 10^7)$	(¹ / ₂)		
$E_{\rm k} = 1.0 \times 10^7 {\rm J}$	(¹ / ₂)	Accept $9.8 \times 10^6 \text{ J}$	1
(b)(iii) $E_{\rm k} = \frac{1}{2}mv^2$	(1/2)		
$v = \sqrt{(2 \times 10^7 / 15)}$	(¹ / ₂)		
$v = \sqrt{(1 \cdot 33 \times 10^6)}$		Accept $1.1 \ge 10^3 \text{ m s}^{-1}$ if	
$v = 1 \cdot 2 \ge 10^3 \mathrm{m s^{-1}}$	(1)	$E_{\rm k} = 9.8 \times 10^6 {\rm J}$ is taken	2

2003 Physics Advanced Higher		
llocation	Notes	Mark
(1/2)		
(1/2)	Accept 14.7 N	1
(1/2)	$F = (-)kx \qquad (1/2)$	
(1/2)	$k = \frac{(-)F}{-} = \frac{1 \cdot 5 \times 9 \cdot 8}{-} = 36 \cdot 8 (1/2)$	
	$x 40 \times 10^{-5}$	
	Sub 30×10^{-3}	
(1)	11 N (1)	
	Accept 11·25 N OR consistent with (<i>a</i>)	
	Alternative Solution	
	$40 \mathrm{mm} 15 \mathrm{N}$ (1/2)	
	30 mm	
	=11 N (1)	
		2
(1/2)		
(1/2)		
(1/2)	Accept 15.63 rad s ⁻¹	
(1/.)	$T = 2\pi \sqrt{\frac{m}{2}}$	
(/ ²)	$\bigvee k$	
(1)	<i>k</i> – (1)	
	Sub – (1/2)	
	T = 0.40 s (1)	3
	(igher (1/2)	Iligher Notes Illocation Notes ('/2) $F = (-)kx$ ('/2) ('/2) $K = \frac{(-)F}{x} = \frac{1\cdot5 \times 9\cdot8}{40 \times 10^{-3}} = 36\cdot8$ ('/2) (1) Sub 30×10^{-3} (1) Sub 30×10^{-3} (1) (1) Accept $11\cdot25$ N OR consistent with (a) Alternative Solution ('/2) 40 mm 15 N ('/2) 30 mm (15 $\times 30)$ ('/2) 40 mm 15 N ('/2) 40 mm (15 $\times 30)$ ('/2) (1) Accept $15\cdot 63$ rad s^{-1} ('/2) Accept $15\cdot 63$ rad s^{-1} ('/2) $T = 2\pi \sqrt{\frac{m}{k}}$ ('/2) $k - (1)$ Sub - ('/2) $T = 0.40$ s (1)

	:	2003 Physics Advanced Higher				
	Sam	pple Answers and Mark Allocation	on	Notes	Mark	s
5. ((a)	Force per unit positive charge	(1)	Must have unit AND positive.	1	2
(<i>b</i>)(i)	F = QE = 1.60 × 10 ⁻¹⁹ × 750 (= 1.20 × 10 ⁻¹⁶ N) a = F/m a = (1.2 × 10-16)/(9.11 × 10-31) a = 1.32 × 1014 m s-2	$\binom{1}{2}$ $\binom{1}{2}$ $\binom{1}{2}$ $\binom{1}{2}$		2	
(<i>b</i>)(ii)	$v^{2} = u^{2} + 2as$ $v^{2} = 2 \times 1.32 \times 10^{14} \times 25 \times 10^{-3}$ $v^{2} = 6.6 \times 10^{12}$ $v = 2.57 \times 10^{6} \mathrm{m s^{-1}}$	(¹ /2) (¹ /2) (1)	Accept $QV = \frac{1}{2}mv^{2} (\frac{1}{2})$ $V = Ed$ $= 750 \times 25 \times 10^{-3}$ $= 18.75 (\frac{1}{2})$ $v^{2} = (2QV/m)$ $= \frac{(2 \times 1.60 \times 10^{-19} \times 18.75)}{9.11 \times 10^{-31}}$ $v = 2.57 \times 10^{6} \text{ m s}^{-1} (1)$	2	
(<i>c</i>)(i)	$m = \frac{(9 \cdot 11 \times 10^{-31})}{\sqrt{\left(1 - \frac{(1 \cdot 5 \times 10^8)^2}{(3 \cdot 0 \times 10^8)^2}\right)}} \qquad (1/2) \text{ top}$) DATA) Subst.			
		$m = 1 \cdot 1 \times 10^{-30} \mathrm{kg}$	(1)	Accept 1.05×10^{-30} kg	2	
	(ii)	$E = mc^{2}$ $E = 1 \cdot 1 \times 10^{-30} \times (3 \cdot 0 \times 10^{8})^{2}$ $E = 9 \cdot 9 \times 10^{-14} \text{ J}$	(¹ / ₂) (¹ / ₂) (1)	$M = 1.05 \times 10^{-30}$ kg gives $E = 9.5 \times 10^{-14}$ J	2	
((d)	$V = Q/(4\pi\varepsilon_0 r)$ $E_{\rm r} = OV$	(¹ / ₂)	$E_{\rm k} = (Q_1 Q_2) / (4\pi \epsilon_0 r)$ (1)		
r	$c = \frac{(2)}{(4)}$	$\begin{array}{c} \mathbf{L}_{k} = \mathcal{D} \mathbf{V} \\ \mathbf{(}^{1}/2) & \mathbf{(}^{1}/2) \\ \times 1.60 \times 10^{-19} \times 74 \times 1.60 \times 10^{-19}) \\ 4 \times \pi \times 8.85 \times 10^{-12} \times 1.17 \times 10^{-12}) \end{array}$	(/²)	$74 \times 1.60 \times 10^{-9} (^{1}/_{2})$ $2 \times 1.60 \times 10^{-9} (^{1}/_{2})$		
r	$r = 2 \cdot$	$91 \times 10^{-14} \mathrm{m}$	(1)		3	

	2003 Physics Advanced High	ner			
Sar	mple Answers and Mark Allo	cation	Notes	Ma	arks
6. (<i>a</i>)	$F = BIl(\sin\theta)$	(1/2)			7
	$F = 0.60 \times 0.40 \times 0.25$	(1/2)			
	$F = 0.06 \mathrm{N}$	(1)		2	
(b)	$T = 2 \times Fr$	(1/2)	T = Fr alone (1/2) only.		
	$T = 2 \times 0.06 \times 0.055$	(1/2)			
	$T = 6.6 \times 10^{-3} \mathrm{N}\mathrm{m}$	(1)		2	
(c)	(1/2) $(1/2)T = 6.6 \times 10^{-3} \times \cos 30^{\circ}$				
	$T = 5.7 \times 10^{-3} \mathrm{Nm}$	(1)		2	
(d) (Plar magn Forc of) th	ne of) the loop is always parallel netic field. or e will always act perpendicular t ne loop.	to the to (the plane	Idea of radial field. (1)		-
		(1)		1	

	2003 Physics Advanced Hig	her			
Sa	mple Answers and Mark All	ocation	Notes	Ma	arks
7. (<i>a</i>)	$B = \mu_{\rm o} I / 2\pi r$	(1/2)			5
	$B = \frac{(4\pi \times 10^{-7} \times 0.50)}{(2\pi \times 0.12)}$	(1/2)			
	$B = 8 \cdot 3 \times 10^{-7} \mathrm{T}$	(1)		2	_
(b)					
	$F/l = \mu_0 I_1 I_2 / 2\pi r$	(¹ / ₂)	Accept $F/l = BI$ (1/2)		
	$F/l = 0.75 \times 8.3 \times 10^{-7}$	(1/2)			
	$F/l = 6.2 \times 10^{-7} \mathrm{N}\mathrm{m}^{-1}$	(1)	Accept $6.3 \times 10^{-7} \mathrm{N}\mathrm{m}^{-1}$		
	Force is repulsive				
	Force acts to the right	(1)		3	

		2003 Physics Advanced Higher				
	San	nple Answers and Mark Allocation	n	Notes	Ma	ırks
8.	(<i>a</i>)(i)	Force due to magnetic field and force due to electric field are balanced.	(1)	(¹ /2) for "balanced." (¹ /2) for names of forces.	1	7
	(ii)	F = QE F = QvB v = E/B $v = (4.2 \times 10^3)/(2.8 \times 10^{-3})$	(¹ /2) (¹ /2)	v = E/B (1)		
		$v = (4.2 \times 10^{6})/(2.8 \times 10^{-6})$ $v = 1.5 \times 10^{6} \mathrm{m s^{-1}}$	(1)		2	-
	(b)	Speed of alphas equal to speed of electrons. Speed of charged particles depends on <i>E</i> and <i>B</i> OR Speed does not depend on <i>Q</i> or <i>m</i>	(1) only (1)		2	
	(c)	Path of α has greater radius of curve than path of electron Paths in opposite directions Paths in correct directions	rature (1) (¹ / ₂) (¹ / ₂)			

	2003 Physics Advanced Higher				
Sar	nple Answers and Mark Allocation	n	Notes	Ma	ırks
9. (<i>a</i>)(i)	A changing/increasing current in the	e			10
	inductor generates a back e.m.f.	(1)		1	-
(ii)	R = V/I				
	R = 2/0.25 (1/2) top and (1/2) bottom	om			
	$R = 8 \Omega$	(1)		2	-
(ii)	emf = (-) I dI				
	$\frac{dt}{dt}$	(¹ / ₂)			
	L = 2/20	(1/2)	E = -2 V required		
	$L = 0.10 \mathrm{H}$	(1)	$L = -0.10 \mathrm{H}$ (1/2 max)	2	-
(iv)	$E = \frac{1}{L}LI^2$	(¹ /2)			
	$E = \frac{1}{2} \times 0.10 \times 0.25^2$	(¹ / ₂)			
	$E = 3 \cdot 1 \times 10^{-3} \mathrm{J}$	(1)		2	
(1)					-
(b)	V ₁ reading increases	(¹ / ₂)			
	Inductive reactance increases (or equivalent)	(1)	Idea of conservation of		
	Current decreases $(V_2 = IR)$	(1)	energy acceptable ie as V_1 increases V_2 decreases		
SO	V_2 reading decreases	(1/2)			
				3	

	2003 Physics Advanced Hi	gher			
Sa	mple Answers and Mark Al	location	Notes	Ma	arks
10. (<i>a</i>)					7
	Amplitude = 25 mm	(1)		1	
(b)					
	f = 55 (Hz)	(1/2)			
	$\lambda = 16 \text{ (mm)}$	(1/2)			
	$v = f\lambda$	(¹ /2)			
	$v = 55 \times 16$	(1/2)			
	$v = 880 \mathrm{mms^{-1}}$				
	$(v = 0.88 \mathrm{ms^{-1}})$	(1)		3	
(c)					
	$\phi = 2\pi x / \lambda$	(1/2)	Accept 2π		
	$\phi = 2\pi \times 24/16$	(1/2)	$24 \text{ mm} 2\pi \times 24/16$ = $3\pi \text{ rad}$		
	$\phi = 3\pi \mathrm{rad}$	(1)			
			1·5 λ ('/2) only. Must be in radians	2	
$\begin{pmatrix} (d) \\ \Delta p y \end{pmatrix}$	multiple of 16mm	(1)			
		(1)		1	

	2003 Physics Advanced Higher				
San	nple Answers and Mark Allocatior	ı	Notes	Ma	rks
11. (<i>a</i>)(i)	Constant phase difference/relationsh between sources	ip (1)		1	7
(ii)	Optical path difference = Path difference $\times n$	(1)		1	
(iii)	(A) Optical p.d. = $(n + 1/2)\lambda$ (B) Optical p.d. = $n\lambda$	(¹ / ₂)			
(iv)	There will be a phase change of π at the lower surface of the slide.	(1)	$\frac{\lambda}{2}$ unacceptable	1	
(<i>b</i>)(i)	Rays reflected from the surface of MgF <u>interfere destructively</u> with rays reflected from the glass surface.	(1)		1	
(ii)	$d = \lambda/4n$ $d = (550 \times 10^{-9})$	(1/2)			
	4×1.38 — data — $data$ — $data$ — $data$ — $d = 9.96 \times 10^{-8} \mathrm{m}$	- (1/2) (1)		2	

2003 Physics Advanced Higher				_	
Sample Answers and Mark Allocation			Notes	Marks	
12. (<i>a</i>)	Polarised Light – (The electric field vector of) the voltage of th	wave wave (1)		1	5
(b) (c)	B Less than 5(W m ⁻²) More than Zero C Zero D Less than 5(W m ⁻²) More than Zero E 5(W m ⁻²) $n = \frac{\sin i_p}{\sin \theta_{glass}}$ $i_p + \theta_{glass} = 90^\circ$ $\theta_{glass} = 90^\circ - i_p$ $\frac{n_{glass}}{1} = \frac{\sin i_p}{\sin(90^\circ - i_p)}$ $n_{glass} = \frac{\sin i_p}{\cos i_p}$ $n_{glass} = \tan i_p$	(¹ /2) (¹ /2) (¹ /2) (¹ /2) (¹ /2) (¹ /2) (¹ /2)	Units not required as given in table heading.	2	

[END OF MARKING INSTRUCTIONS]