Advanced Higher WAVE PHENOMENA

Waves

1. State that in wave motion energy is transferred with no net mass transport.
2. State that the intensity of a wave is directly proportional to (amplitude) ${ }^{2}$.
3. State that the sine or cosine variation is the simplest mathematical form of a wave.
4. State that all waveforms can be described by the superposition of sine or cosine waves.
5. Explain that the relationship $y=a \sin 2 \pi\left(f t-\frac{x}{\lambda}\right)$, represents a travelling wave.
6. Carry out calculations on travelling waves using the above relationship.
7. Explain the meaning of phase difference.
8. Explain what is meant by a stationary wave.
9. Define the terms 'node' and 'antinode'.
10. State that the Doppler effect is the change in frequency observed when a source of sound waves is moving relative to an observer.
11. Derive the expression for the apparent frequency detected when a source of sound waves moves relative to a stationary observer.
12. Derive the expression for the apparent frequency detected when an observer moves relative to a stationary source of sound waves.
13. Carry out calculations using the above relationships.

NOTES

- State that in wave motion, energy is transferred with no net mass transport.
- State that the intensity of a wave is directly proportional to (amplitude) ${ }^{2}$.
- State that the sine and cosine variation is the simplest mathematical form of a wave.
- State that all waveforms can be described by the superposition of sine or cosine waves.
- Explain that this relationship represents a travelling wave: $\mathbf{y}=\mathbf{a} \sin 2 \pi(f t-x / \lambda)$.
- Explain the meaning of phase difference.
- Explain what is meant by a stationary wave.
- Define the terms 'node' and 'antinode'.
- State that the Doppler effect is the change in frequency observed when a source of sound waves is moving relative to an observer.
- Derive the expression for the apparent frequency detected when a source of sound waves moves relative to a stationary observer.
- Derive the expression for the apparent frequency detected when an observer moves relative to a stationary source of sound waves.
- State that in wave motion, energy is transferred with no net mass transport.

- State that the intensity of a wave is directly proportional to (amplitude) ${ }^{2}$.

- State that the sine and cosine variation is the simplest mathematical form of a wave.

- State that all waveforms can be described by the superposition of sine or cosine waves.
- Explain that this relationship represents a travelling wave: $\mathrm{y}=\mathrm{a} \sin 2 \pi(\mathrm{ft}-\mathrm{x} / \lambda)$.

$$
y=a \sin 2 \pi(f t-x / \lambda)
$$

You should also know the wave equations:

$$
v=f \lambda \quad f=1 / T
$$

- Carry out calculations on travelling waves using the relationship $\mathbf{y}=\mathbf{a} \sin 2 \pi(f t-x / \lambda)$.

1) The travelling wave shown below is represented by this equation, where all distances are in metres:

$$
0.05=0.08 \sin 2 \pi(5 t-0.25 / 0.15)
$$

(a) Fill in the $\mathbf{4}$ numerical values on the diagram.
(b) Calculate the speed of the wave.
2) (a) Write an expression to describe the travelling wave shown below, which has a frequency of 0.25 Hz .
(b) Calculate the wave speed.

3) (a) This equation represents a travelling wave:

$$
y=a \sin 2 \pi(f t-x / \lambda)
$$

What quantities do the symbols $\mathbf{y}, \mathbf{a}, \mathbf{f}$ and $\boldsymbol{\lambda}$ represent?
(b) (i) State the numerical values for the frequency and wavelength of the travelling wave represented by the equation below.
(ii) Hence, calculate the wave speed.

$$
y=0.1 \sin 2 \pi(3 t-x / 0.2)
$$

4) A loudspeaker emits a travelling sound wave of frequency 1100 Hz . The wave has an amplitude of $3.0 \times 10^{-4} \mathrm{~m}$ and travels through the air at $340 \mathrm{~m} \mathrm{~s}^{-1}$.
(a) Calculate the wavelength of the sound wave.
(b) Write an equation, with appropriate numerical values, to represent the travelling sound wave.
5) Write an equation, with appropriate numerical values, to represent a sound wave travelling at $320 \mathrm{~m} \mathrm{~s}^{-1}$ which has an amplitude of $2.0 \times 10^{-4} \mathrm{~m}$ and a frequency of 250 Hz .
6) A travelling wave has a speed of $6 \mathrm{~m} \mathrm{~s}^{-1}$, an amplitude of 0.3 m and a wavelength of 12 m .
(a) Calculate the frequency of the travelling wave.
(b) Write an equation, with appropriate numerical values, to represent the travelling wave.
7) Using appropriate numerical values, write an equation to represent a wave of amplitude 0.5 m and wavelength 0.2 m which travels to the left along a rope at $2.4 \mathrm{~m} \mathrm{~s}^{-1}$.
8) A travelling wave is represented by the expression

$$
y=0.005 \sin 2 \pi(12 t-x / 3)
$$

(a) Find values for the wave's frequency, wavelength and speed.
(b) Write an expression to represent another travelling wave which travels in the opposite direction at the same speed as the wave above but which has five times the amplitude and twice the frequency.
9) The equation for a travelling wave is given below:

$$
y=0.5 \sin 2 \pi(0.4 t-x / 12)
$$

Calculate the displacement (\mathbf{y}) of a particle from its equilibrium position 2.5 s after the energy has left the source (origin) if the distance between the source and particle's equilibrium position is 7 m .

[The angle $2 \pi(\mathrm{ft}-\mathrm{x} / \lambda)$ is expressed in radians.]

10) This equation represents a travelling wave:

$$
y=0.2 \sin (4 \pi t-0.1 x)
$$

(a) Rewrite the equation in a more familiar form.
(b) Determine the wave's amplitude, frequency, wavelength and speed.
(c) Calculate the displacement (y) of a particle from its equilibrium position 0.3 s after the energy has left the source (origin) if the distance between the source and particle's equilibrium position is 25 m.

The sine function
11) The wave diagram below represents a wave travelling to the right. On the diagram:
(a) Use the letters \mathbf{A} and \mathbf{B} to show 2 points which are in phase.
(b) Use the letters \mathbf{C} and \mathbf{D} to show 2 points which are exactly out of phase.
(c) Use the letters \mathbf{E} and \mathbf{F} to show 2 points which are out of phase by $\boldsymbol{\lambda} \boldsymbol{\lambda} 4$.
(d) Use the letters \mathbf{G} and \mathbf{H} to show 2 points which are out of phase by $\boldsymbol{\pi} / \mathbf{4}$ radians.
(e) Draw (using a dashed line) a wave of identical amplitude and wavelength which moves $\underline{\mathbf{9 0}}^{\circ}$ ($\pi / 2$ radians) behind the wave shown.

12) (a) Write down the equation
for the "phase difference"
between 2 points on a travelling
wave. Define all the symbols used.
(b) Calculate the "phase difference" in radians between the 2 specified points on the travelling waves whose wavelength is given:

$$
\bullet \lambda=0.25 \mathrm{~m}
$$

- distance between origin and equilibrium position of point $A=0.20 \mathrm{~m}$;
- distance between origin and equilibrium position of point $B=0.35 \mathbf{~ m}$.

$$
\bullet \lambda=2.5 \mathrm{~m}
$$

- distance between origin and equilibrium position of point $X=2.25 \mathrm{~m}$;
- distance between origin and equilibrium position of point $Y=2.50 \mathbf{m}$.

13) This equation represents a travelling wave. All distances are in metres. Time is in seconds:

$$
y=3 \sin 2 \pi(5 t-x / 1.6)
$$

(a) State the wavelength of the travelling wave.
(b) The distance between the equilibrium position of 2 points on the wave is 2.4 m . Calculate the phase difference (in radians) between these 2 points.
(c) Another 2 points on the wave are described as being 'in phase". Suggest a possible value for the horizontal distance between these 2 points. Explain your answer.
14) The equation of a travelling wave is shown below. All distances are in metres Time is in seconds.

$$
y=4 \sin 2 \pi(12 t-0.25 x)
$$

(a) Rewrite the equation in a more familiar form.
(b) State the wavelength of the wave.
(c) Calculate the phase difference (in radians) between the point at $x=3.0 \mathrm{~m}$ and $\mathrm{x}=5.0 \mathrm{~m}$.
(d) Calculate the time the wave will take to travel between these 2 points.
16) (a) Describe how a "stationary wave" is formed.
(b) Sketch and label part of a "stationary wave", showing at least $\mathbf{3}$ 'nodes".
(c) (i) What is a "node"? (ii) What causes the formation of "nodes"?
(d) (i) What is an "antinode"? (ii) What causes the formation of "antinodes"?
(e) Two adjacent (neighbouring) "nodes" on a "stationary wave" are separated by a distance of 0.16 m .

State the wavelength of the two "travelling waves" which form the "stationary wave".
Explain your answer.
17) Plane travelling waves are incident at right-angles to a plane barrier so that the reflected waves pass through the incident waves.
In the region where the incident and reflected waves overlap, it is noticed that the waves are more closely spaced, are not moving along and have increased amplitude.
Explain each of these 3 observations.

18) A "travelling wave" approaches a wall at $0.90 \mathrm{~m} \mathrm{~s}^{-1}$.

The wave is reflected, forming a "stationary wave", as shown in the diagram.
(a) State the speed of the reflected wave.
(b) How does the phase of the reflected wave compare with the phase of the incident (incoming) wave?

(c) Use the diagram to determine the wavelength of the "travelling wave" which approaches the wall.
(d) Calculate the frequency of the "travelling wave" which approaches the wall.
19) The diagram shows the "stationary wave" set up when a skipping rope is fixed to a wall and the free end is shaken up and down with a frequency of 1.5 Hz .

(a) Determine the horizontal distance between neighbouring nodes.
(b) Determine the wavelength of the "travelling wave" which approaches the wall.
(c) Calculate the speed of the "travelling wave" which approaches the wall.
20) The apparatus shown is used to determine the wavelength and speed of sound in air.

Minima are detected at \mathbf{A} and \mathbf{B}. As the microphone is moved from \mathbf{A} to \mathbf{B},
seven additional minima are detected.
(a) Calculate the wavelength of the sound waves.
(A diagram will help you!)
(b) If the frequency of the signal generator is 1700 Hz , calculate the speed of the sound waves in air.
(c) State one change which could be made to the apparatus to decrease the separation of the mimima.
21) The diagram shows a "stationary wave" experiment using microwaves. Waves sent out by the transmitter are reflected by the reflector, with nodes and antinodes being detected by the probe and meter.
(a) Describe how you would use the apparatus to determine the wavelength of the microwaves.

(b) A node is detected when the probe is at the 21.2 cm mark on the metre stick. A further 20 nodes are detected as the probe is moved along the metre stick, with the last node occurring at the 49.8 cm mark.

For these microwaves, calculate the wavelength and frequency.

