Physics

Higher

Finalised Marking Instructions

Scottish Qualifications Authority 2015

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Part One: General Marking Principles for: Physics Higher

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.
(a) Marks for each candidate response must always be assigned in line with these general marking principles and the specific Marking Instructions for the relevant question. If a specific candidate response does not seem to be covered by either the principles or detailed Marking Instructions, and you are uncertain how to assess it, you must seek guidance from your Team Leader/Principal Assessor.
(b) Marking should always be positive ie, marks should be awarded for what is correct and not deducted for errors or omissions.

GENERAL MARKING ADVICE: Physics Higher

The marking schemes are written to assist in determining the "minimal acceptable answer" rather than listing every possible correct and incorrect answer. The following notes are offered to support Markers in making judgements on candidates' evidence, and apply to marking both end of unit assessments and course assessments.

Detailed Marking Instructions - Higher Physics

1. General Marking Instructions

SQA published Physics General Marking Instructions in July 1999. Please refer to this publication when interpreting the detailed Marking Instructions.

2. Recording of marks

The following additional advice was given to markers regarding the recording of marks on candidate scripts.
(a) The total mark awarded for each question should be recorded in the outer margin. The inner margin should be used to record the mark for each part of a question as indicated in the detailed Marking Instructions.
(b) The fine divisions of marks shown in the detailed Marking Instructions may be recorded within the body of the script beside the candidate's response. Where such marks are shown they must total to the mark in the inner margin.
(c) Numbers recorded on candidate scripts should always be the marks being awarded. Negative marks or marks to be subtracted should not be recorded on scripts.
(d) The number out of which a mark is scored should never be recorded as a denominator. ($1 / 2$ mark will always mean one half mark and never 1 out of 2)
(e) Where square ruled paper is enclosed inside answer books it should be clearly indicated that this item has been considered by the marker. The mark awarded should be transferred to the script booklet inner margin and marked G.
(f) The mark awarded for each question should be transferred to the grid on the back of the script. When the marker has completed marking the candidate's response to all questions, the marks for individual questions are added to give the total script mark.
(g) The total mark awarded for an individual question may include an odd half mark $-1 / 2$. If there is an odd half mark in the total script mark, this is rounded up to the next whole number when transferred to the box on the front of the script.

3. Other Marking Symbols which may be used

| TICK | $-\quad$ Correct point as detailed in scheme, includes data entry |
| :--- | :--- | :--- |
| SCORE THROUGH $-\quad$Any part of answer which is wrong. (For a block of
 wrong answers indicate zero marks.) | |
| INVERTED VEE $-\quad$ A point omitted which has led to a loss of marks. | |
| WAVY LINE $\quad-\quad$Under an answer worth marks which is wrong only
 because a wrong answer has been carried forward from a
 previous part. | |
| "G" \quadReference to a graph on separate paper. You MUST
 show a mark on the graph paper and the SAME mark on
 the script. | |

4. Marking Symbols which may NOT be used.

"WP" - Marks not awarded because an apparently correct answer was due to the use of "wrong physics".
"ARITH" - Candidate has made an arithmetic mistake.
"SIG FIGS" or "SF" - Candidate has made a mistake in the number of significant figures for a final answer.

Physics - Marking Issues

The current in a resistor is 1.5 amperes when the potential difference across it is 7.5 volts. Calculate the resistance of the resistor.

Answers

1. $\quad V=I R$
$7 \cdot 5=1 \cdot 5 R$
$R=5 \cdot 0 \Omega$
2. $5 \cdot 0 \Omega$
3. $5 \cdot 0$
4. $4 \cdot 0 \Omega$
5. $\quad \Omega$
6. $R=\frac{V}{I}=\frac{7 \cdot 5}{1.5}=4 \cdot 0 \Omega$
7. $R=\frac{V}{I}=4 \cdot 0 \Omega$
8. $R=\frac{V}{I}=$ \qquad Ω
9. $R=\frac{V}{I}=\frac{7.5}{1.5}=\square \Omega$
10. $R=\frac{V}{I}=\frac{7 \cdot 5}{1 \cdot 5}=4 \cdot 0$
11. $R=\frac{V}{I}=\frac{1.5}{7.5}=5 \cdot 0 \Omega$
12. $R=\frac{V}{I}=\frac{75}{1.5}=5.0 \Omega$
13. $R=\frac{I}{V}=\frac{7 \cdot 5}{1.5}=5 \cdot 0 \Omega$
14. $V=I R$
$R=\frac{I}{V}=\frac{1 \cdot 5}{7 \cdot 5}=0 \cdot 2 \Omega$
(0) Wrong formula
(1½) Arithmetic error
GMI 7
(1/2) Formula only

Issue

Ideal Answer

GMI 1

GMI 2(a)
GMI 1

GMI 1

GMI 7

GMI 4 and 1

GMI 4 and 1

GMI 4 and 1

GMI 2(a) and 7
(1/2) Formula but wrong substitution
GMI 5

GMI 5

GMI 5

GMI 20

Part Two: Marking Instructions for each Question

2015 Physics Higher

Section A

Question	Expected Answer(s)	Max Mark
1.	E	1
2.	C	1
3.	B	1
4.	C	1
5.	B	1
6.	B	1
7.	C	1
8.	D	1
9.	B	1
10.	E	

Question	Expected Answer(s)	Max Mark
11.	E	1
12.	A	1
13.	A	1
14.	A	1
15.	D	1
16.	D	1
17.	A	1
18.	E	1
19.	D	1
20.	B	1

Section B:

Question		Sample Answers and Mark Allocation	Notes	Inner Margin	Outer Margin
22	a	$\begin{aligned} v^{2} & =u^{2}+2 a s \\ 0 & =90^{2}+2 \times a \times 1980 \\ a & =-2 \cdot 04545\left(\mathrm{~ms}^{-2}\right) \end{aligned}$ $\begin{aligned} F & =m a \\ & =3520 \times(-) 2 \cdot 04545 \\ & =(-) 7200(\mathrm{~N}) \end{aligned}$ $\begin{aligned} w & =m g \\ & =3520 \times 1 \cdot 25 \\ & =4400(\mathrm{~N}) \end{aligned}$ $\text { Force exerted by engines }=4400+7200$ $=11600 \mathrm{~N}(1 / 2)$	Independent calculations If 2000 for s, max (2) Negative sign missing subtract (1/2) u and s must have the same sign Drop negative sign from line 2 to line 3 subtract (1/2) If final answer is 11500 N then student used $s=2000$, max (2)	3+	5
	b	$\begin{align*} & (\text { constant speed } \Rightarrow) \\ & \quad \text { upward force }=\text { weight } \tag{1/2} \end{align*}$ $\begin{align*} 3 \mathrm{~T} \cos 20 & =1380 \tag{112}\\ \mathrm{~T} & =490(\mathrm{~N}) \end{align*}$	Or 'Forces are balanced' anywhere in answer If "T = $490(\mathrm{~N})$ " not shown, then max $(11 / 2)$	$2 \bullet$	

Question		Sample Answers and Mark Allocation	Notes	Inner Margin	Outer Margin
23	a i		$\begin{align*} & F t=m v-m u \tag{1/2}\\ & F \times 0 \cdot 020=0 \cdot 16 \times 39-0 \quad(1 / 2) \tag{1/2}\\ &=312 \mathrm{~N} \tag{1}\\ & \text { Or } \\ & v=u+a t \\ & 39=0+a \times 0.020 \\ & a=1950 \quad \text { Both formulae } \quad(\mathbf{1}) \tag{1/2}\\ & F=m a \quad \text { Both substitutions }(1 / 2) \\ &=0 \cdot 16 \times 1950 \\ &=312 \mathrm{~N} \end{align*}$ Wrong or missing unit deduct (1/2)	2	5
	a ii	At least one labelled axis is required, otherwise (0) Then, shape of graph (1)	No origin subtract ($1 / 2$) If peak labelled as 310 N , deduct (1/2)	$1 \bullet$	
	b		Graphs not identified Ignore areas being different.	2+	

Question		Sample Answers and Mark Allocation	Notes	Inner Margin	Outer Margin
24	a	Line does not pass through the origin. (1)	OR use values from graph to show $\frac{P}{T} \neq$ a constant	1+	5
	b	$\begin{align*} & \frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}} \tag{1/2}\\ & \frac{P_{2}}{(273+170)}=\frac{101}{273} \tag{1/2}\\ & P_{2}=164 \mathrm{kPa} \tag{1} \end{align*}$	Can use any corresponding values from table/graph Allow up to 5 significant figures If temperature is not in kelvin, then max ($1 / 2$) for formula	2 -	
	c	- as temperature decreases the particles slow down/lose E_{k} - strike the sides of the container less often (1/2) each collision less forceful/hard - pressure decreases \longrightarrow Reference must be clearly about the force of the individual particle collisions eg "the particles move more slowly and so strike the walls less often, meaning the force is less and so the pressure is less" gets ($11 / 2$)	Answer must have both of: - Pressure decreases and - Particle collisions with walls/container before any marks can be awarded. Do not accept arrows to mean 'decreases', unless a key is given	2	

Question		Sample Answers and Mark Allocation	Notes	Inner Margin	Outer Margin
25	a i	$\begin{align*} V_{1} & =V_{\text {supply }} \times R_{1} /\left(R_{1}+R_{2}\right) \tag{1/2}\\ & =9 \cdot 0 \times 1000 / 1800 \tag{1/2}\\ & =5 \cdot 0(\mathrm{~V}) \end{align*}$ Alternative: $\begin{align*} I & =V_{\mathrm{tot}} / R_{\mathrm{tot}} \\ & =9 \cdot 0 / 1800=5 \cdot 0 \times 10^{-3}(\mathrm{~A}) \\ V_{\mathrm{XY}} & =I \times R_{\mathrm{XY}} \tag{1/2}\\ & =5 \cdot 0 \times 10^{-3} \times 1000 \tag{1/2}\\ & =5 \cdot 0(\mathrm{~V}) \end{align*}$	Must start with an appropriate relationship. Final line must be shown, otherwise lose second ($1 / 2$).	1	5
	a ii	$\begin{align*} \frac{1}{R_{T}} & =\frac{1}{R_{1}}+\frac{1}{R_{2}} \tag{1/2}\\ & =2 / 1000 \\ R_{T} & =500 \Omega \tag{1/2}\\ V_{1} & =V_{s} \times R_{1} /\left(R_{1}+R_{2}\right) \\ & =9 \cdot 0 \times 500 / 1300 \\ & =3 \cdot 5(\mathrm{~V}) \tag{1} \end{align*}$ accept 3.46 V		2•	
	b	Student A's design is better. For student B's design, the addition of 1000Ω in parallel with 10000Ω produces a greater proportional decrease in the parallel resistance (than for A's design). This causes a greater proportional decrease in the p.d. across the output terminals $(1 / 2)$	To get the first mark, there must be an attempt at a justification (without any wrong physics) Can be done using a complete recalculation as in (a)(ii). $\begin{equation*} \left(\mathrm{R}_{\mathrm{p}}=909 \Omega, \mathrm{~V}_{\mathrm{o}}=0.92 \mathrm{~V}\right) \tag{1/2} \end{equation*}$ OR argument the other way round.	2+	

Question		Sample Answers and Mark Allocation		Notes	Inner Margin	Outer Margin
27	a	$\begin{aligned} Q & =C V \\ & =32 \times 10^{-6} \times 5000 \\ & =0 \cdot 16(\mathrm{C}) \end{aligned}$	$\begin{aligned} & (1 / 2) \\ & (1 / 2) \end{aligned}$	Must start with formula deduct $(1 / 2)$ if $\mathrm{Q}=0 \cdot 16(\mathrm{C})$ not shown	1	5
	b	$\begin{aligned} E & =1 / 2 Q V \\ & =1 / 2 \times 0 \cdot 16 \times 5000 \\ & =400 \mathrm{~J} \end{aligned}$ OR $\begin{aligned} E & =1 / 2 C V^{2} \\ & =1 / 2 \times 32 \times 10^{-6} \times 5000^{2} \\ & =400 \mathrm{~J} \end{aligned}$	(1/2) (1/2) (1) (1/2) (1/2) (1)	must be $0 \cdot 16$, cannot carry a wrong answer from (a)	2	
	c	$\begin{aligned} \mathrm{I} & =V / R \\ & =5000 / 40 \\ & =125 \mathrm{~A} \end{aligned}$ OR $\begin{aligned} \mathrm{E} & =1 / 2 \mathrm{Q}^{2} / \mathrm{C} \\ & =1 / 2 \times 0 \cdot 16^{2} / 32 \times 10^{-6} \\ & =400 \mathrm{~J} \end{aligned}$	(1/2) (1/2) (1) (1/2) (1/2) (1)		$2 \bullet$	

Question		Sample Answers and Mark Allocation	Notes	Inner Margin	Outer Margin
28	a i	Impurity atoms are 'added' (to a pure semiconductor.)		1	6
	a ii	(A semiconductor which has been doped so that the) majority charge carriers are negative/electrons		1	
	b i	Photovoltaic (1)		1	
	b ii	$\begin{align*} V_{2}=V_{\mathrm{o}} & =-V_{1} \times R_{\mathrm{f}} / R_{\mathrm{i}} \tag{1/2}\\ & =-0 \cdot 6 \times 45 / 5 \tag{1/2}\\ & =-5 \cdot 4 \mathrm{~V} \tag{1} \end{align*}$	If -ve is missing from the formula, then 0 marks	2	
	b iii	$-12 \mathrm{~V}$ (to -10 V , ie approx. 85% of -12) If a statement is also provided and it contains wrong physics then 0 marks \{even if -12 V given $\}$, eg 'because the (output) voltage saturates'.	Answer must be negative	$1 \bullet$	

Question		Sample Answers and Mark Allocation	Notes	Inner Margin	Outer Margin
29	$a \quad i$	(The work function is the) minimum energy needed to eject an electron (from the surface)		1	8
	a ii	$\begin{aligned} & E_{\mathrm{k}}=h c / \lambda-\text { work function } \\ & =6 \cdot 63 \times 10^{-34} \times 3 \times 10^{8} / 425 \times 10^{-9}-3 \cdot 2 \times 10^{-19} \\ & =1.48 \times 10^{-19} \mathrm{~J} \end{aligned}$ OR $\begin{array}{\|lrlrl} E & =h f & f & =v / \lambda \\ & =6 \cdot 63 \times 10^{-34} \times 7 \cdot 058823 \times 10^{14} & & =3 \times 10^{8} \\ & =4 \cdot 68 \times 10^{-19} \mathrm{~J} & & =7 \cdot 0588 \end{array}$ $\begin{align*} E_{k} & =E-\text { work function } \\ & =4 \cdot 68 \times 10^{-19}-3.2 \times 10^{-19} \\ & =1.48 \times 10^{-19} \mathrm{~J} \tag{1} \end{align*}$ $(1 / 2)$ for sub OR $\begin{aligned} & E_{k}=h f-h f_{0} \quad f=v / \lambda \\ & =6 \cdot 63 \times 10^{-34} \times 7 \cdot 058823 \times 10^{14}-3 \cdot 2 \times 10^{-19} \\ & =1.48 \times 10^{-19} \mathrm{~J} \end{aligned}$	(1/2) (1/2) (1) $\begin{aligned} & \quad(1 / 2) \text { for both formula } \\ & 25 \times 10^{-9} \\ & \times 10^{14}(\mathrm{~Hz}) \end{aligned}$ acting work function ($1 / 2$) for both formula ($1 / 2$) (1)	2	

Question		Sample Answers and Mark Allocation	Notes	Inner Margin	Outer Margin
29	b i		Stop marking if E_{k} gained is ve in total E_{k} line If original E_{k} not added then $\max 11 / 2$ marks for two formulas and QV subst ${ }^{\mathrm{n}}$ $1 / 2$ off if original E_{k} not added.	3+	
	b ii	Not correct At each stage the kinetic energy has doubled but the speed increases by the square root $\begin{equation*} \left(\text { as } E_{\mathrm{k}}=1 / 2 m v^{2}\right) \tag{1} \end{equation*}$ OR NO , (1) as initial E_{k} must be included.	Must attempt to justify (and no wrong physics) to get first mark	2+	

Question		Sample Answers and Mark Allocation	Notes	Inner Margin	Outer Margin
30	a i	- Different frequencies / colours are refracted through different angles OR - different frequencies / colours have different refractive indices	Not wavelength on its own but ignore if reference made to frequency. Do NOT accept "bending" on its own but ignore it if follows 'refraction' A correct answer followed by 'diffract' or 'defract', 0 marks	1	8
	a ii	$\begin{align*} n & =\frac{v_{1}}{v_{2}} \tag{1/2}\\ 1.54 & =\frac{3 \times 10^{8}}{v_{2}} \tag{1/2}\\ v_{2} & =1.95 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \tag{1} \end{align*}$		2	
	b i	$\begin{gather*} \mathrm{v}=\mathrm{f} \lambda \tag{1/2}\\ 3 \cdot 0 \times 10^{8}=4 \cdot 57 \times 10^{14} \times \lambda \tag{1/2}\\ \lambda=656 \times 10^{-9} \\ \mathrm{n} \lambda=\mathrm{d} \sin \theta \tag{1/2}\\ 2 \times 656 \times 10^{-9}=\mathrm{d} \times \sin 19 \tag{1/2}\\ \mathrm{~d}=4 \cdot 03 \times 10^{-6} \mathrm{~m} \tag{1} \end{gather*}$		3+	
	b ii	- different colours have different λ - $\mathrm{n} \lambda=\mathrm{d} \sin \theta$ - n and d are the same - θ is different for different λ OR - different colours have different λ - Path difference $=\mathrm{n} \lambda$ - for the same n - PD is different for different λ	Any answer saying it is due to the different diffraction of red and blue light is wrong physics and gets (0)	2+	

Question		Sample Answers and Mark Allocation		Notes	Inner Margin	Outer Margin
31	a	$\begin{aligned} E & =m c^{2} \\ 7.96662 \times 10^{-13} & =m \times\left(3 \times 10^{8}\right)^{2} \\ m & =8.85180 \times 10^{-} \end{aligned}$ Mass of nitrogen nucleus $\begin{aligned} & =\left(20 \cdot 1031 \times 10^{-27}+6 \cdot 69944 \times 1\right. \\ & \left.8 \cdot 85180 \times 10^{-30}\right)-1 \cdot 687 \\ & =2 \cdot 51243 \times 10^{-26} \mathrm{~kg} \end{aligned}$	(1/2) (1/2) (1) 27 (1)	kg needed if this is final answer If data not used to six figures from table, then stop marking \rightarrow max (2) marks eg any rounding here, stop marking	3+	6
	b i	$\begin{aligned} \dot{H} & =H / t \\ & =95 \times 10^{-3} / 180 \times 24 \\ & =22 \mu \mathrm{~Sv} \mathrm{~h}^{-1} \end{aligned}$	$\begin{aligned} & (1 / 2) \\ & (1 / 2) \end{aligned}$	Must show formula, not just numbers deduct ($1 / 2$) if $=22\left(\mu \mathrm{~Sv} \mathrm{~h} ~ \mathrm{~h}^{-1}\right)$ not shown	1	
	b ii	$\begin{aligned} & \dot{H}=\dot{D} w_{R} \text { OR } H / t=D / t \times w_{R} \\ & 22=11 \times w_{\mathrm{R}} \\ & w_{\mathrm{R}}=2 \end{aligned}$	(1/2) (1/2) (1)		2	

[END OF MARKING INSTRUCTIONS]

