2014 Physics

Intermediate 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2014

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Part One: General Marking Principles for: Physics Intermediate 2

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.
(a) Marks for each candidate response must always be assigned in line with these general marking principles and the specific Marking Instructions for the relevant question. If a specific candidate response does not seem to be covered by either the principles or detailed Marking Instructions, and you are uncertain how to assess it, you must seek guidance from your Team Leader/Principal Assessor.
(b) Marking should always be positive ie, marks should be awarded for what is correct and not deducted for errors or omissions.

GENERAL MARKING ADVICE: Physics Intermediate 2

The marking schemes are written to assist in determining the "minimal acceptable answer" rather than listing every possible correct and incorrect answer. The following notes are offered to support Markers in making judgements on candidates' evidence, and apply to marking both end of unit assessments and course assessments.

Physics - Marking Issues

The current in a resistor is 1.5 amperes when the potential difference across it is 7.5 volts. Calculate the resistance of the resistor.
Answers Mark + Comment Issue

1. $\quad V=I R$
$7.5=1 \cdot 5 R$
$R=5.0 \Omega$
2. 5.0Ω
3. $5 \cdot 0$
4. 4.0Ω
5. $\Omega \Omega$
6. $R=\frac{V}{I}=\frac{7.5}{1.5}=4 \cdot 0 \Omega$
7. $R=\frac{V}{I}=4 \cdot 0 \Omega$
8. $R=\frac{V}{I}=$ \qquad Ω
(2) Correct answer

GMI 1
($11 / 2$) Unit missing
GMI 2 (a)
(0) No evidence/wrong answer
(0) No final answer
(11/2) Arithmetic error
GMI 7
GMI 1
GMI 1
Ideal answer
9. $R=\frac{V}{I}=\frac{7 \cdot 5}{1 \cdot 5}=\longrightarrow \Omega$
(1) Formula + subs/No final answer GMI 4 and 1
10. $R=\frac{V}{I}=\frac{7.5}{1.5}=4 \cdot 0$
(1) Formula + substitution

GMI 2 (a) and 7
11. $R=\frac{V}{I}=\frac{1 \cdot 5}{7 \cdot 5}=5 \cdot 0 \Omega$
(1/2) Formula but wrong substitution GMI 5
12. $R=\frac{V}{I}=\frac{75}{1 \cdot 5}=5 \cdot 0 \Omega$
(1/2) Formula but wrong substitution GMI 5
13. $R=\frac{I}{V}=\frac{7 \cdot 5}{1.5}=5 \cdot 0 \Omega$
(0) Wrong formula

GMI 5
14. $V=I R \quad 7.5=1.5 \times R \quad R=0.2 \Omega(11 / 2)$ Arithmetic error

GMI 7
15. $\quad V=I R$
$R=\frac{I}{V}=\frac{1 \cdot 5}{7 \cdot 5}=0 \cdot 2 \Omega$
(1/2) Formula only
GMI 20

2014 Physics Intermediate 2

Marking scheme
Section A

1. A 11. B
2. C
3. D
4. A
5. C
6. B
7. B
8. B
9. E
10. D
11. E
12. C
13. A
14. D
15. B
16. D
17. C
18. D
19. E

Part Two: Marking Instructions for each Question
Section B

Question			Sample Answers and Mark Allocation	Notes		
21.	(a)	(i)	$\begin{align*} \mathrm{a} & =(\mathrm{v}-\mathrm{u}) / \mathrm{t} \tag{1/2}\\ & =(4 \cdot 8-0) / 25 \tag{1/2}\\ & =0 \cdot 192 \mathrm{~m} / \mathrm{s}^{2} \tag{1} \end{align*}$	$\begin{aligned} & 0 \cdot 2 \mathrm{~m} / \mathrm{s}^{2} \\ & 0 \cdot 19 \mathrm{~m} / \mathrm{s}^{2} \end{aligned}$	2	
	(a)	(ii)	Constant speed/steady velocity	accept zero acceleration same speed - 0	1	
	(a)	(iii)		Opposite forces. Names of forces must be attempted to gain marks for force arrows Incorrect labels $-1 / 2$ each Arrows must be attached ($-1 / 2$ each if not)	2	
	(b)	(i)	$\begin{align*} \text { distance } & =\text { a.u.g } \tag{1/2}\\ = & (1 / 2 \times 25 \times 4.8)+(4.8 \times 425) \\ & +(1 / 2 \times 60 \times 4 \cdot 8) \tag{1/2}\\ = & 2244 \mathrm{~m} \tag{1} \end{align*}$	$\left.\begin{array}{l} 2000 \mathrm{~m} \\ 2200 \mathrm{~m} \\ 2240 \mathrm{~m} \end{array}\right] \text {-acceptable }$	2	
		(ii)	$\mathrm{v}=\text { total distance } / \text { time }$ OR $\begin{align*} & =\text { total a.u.g. } / \text { time } \tag{1/2}\\ & =2244 / 510 \tag{1/2}\\ & =4.4 \mathrm{~m} / \mathrm{s} \tag{1} \end{align*}$	consistent with (b) (i)	2	9

Question			Sample Answers and Mark Allocation		Notes	Inner Margin	Outer Margin
25.	(a)	(i)	$\begin{aligned} & \mathrm{P}_{\text {gain }}=\mathrm{P}_{\mathrm{o}} / \mathrm{P}_{\mathrm{i}} \\ & \mathrm{P}_{\text {gain }}=100 / 0 \cdot 02 \\ & \mathrm{P}_{\text {gain }}=5000 \end{aligned}$	$\begin{array}{r} (1 / 2) \\ (1 / 2) \\ (1) \end{array}$	do not accept voltage gain formula (0) $-1 / 2$ if unit given	2	
		(ii)	$\begin{aligned} \mathrm{P} & =\mathrm{V}^{2} / \mathrm{R} \\ 100 & =\mathrm{V}^{2} / 9 \\ \mathrm{~V} & =30 \mathrm{~V} \end{aligned}$	$\begin{aligned} & (1 / 2) \\ & (1 / 2) \\ & (1) \end{aligned}$	accept use of $\mathrm{P}=\mathrm{I}^{2} \mathrm{R}$ \& $\mathrm{V}=\mathrm{IR}$ OR $\mathrm{P}=\mathrm{I}^{2} \mathrm{R} \& \mathrm{P}=\mathrm{IV}$ Both eqns needed for $1^{\text {st } 1 / 2}$ mark.	2	
	(b)		$\begin{gathered} 1 / \mathrm{R}_{\mathrm{T}}=1 / \mathrm{R}_{1}+1 / \mathrm{R}_{2} \\ 1 / \mathrm{R}_{\mathrm{T}}=1 / 9+1 / 6 \\ \mathrm{R}_{\mathrm{T}}=3 \cdot 6 \Omega \end{gathered}$	$\begin{aligned} & (1 / 2) \\ & (1 / 2) \\ & (1) \end{aligned}$	Do not accept incorrect or early rounding	2	
	(c)		440 Hz		Minus $1 / 2$ for no unit or incorrect unit	1	
	(d)	(i)	stronger magnetic OR more turns (in the OR faster movement of further /larger vibr	pulled	do not accept movement of coil or magnetic field	1	
		(ii)	The flow of electro changes direction.		Idea of repetition needed.	1	
		(iii)	The string changes magnetic field.)		Accept any implication of change of direction eg vibrate, back and forth etc...	1	10

Question			Sample Answers and Mark Allocation	Notes	Inner Margin	Outer Margin
30.	(a)		Slows down/stops (the chain reaction) (1) The (boron control) rods absorb neutrons	an explanation must be attempted to get the first mark	2	
	(b)		$\begin{align*} \mathrm{P} & =\mathrm{E} / \mathrm{t} \tag{1/2}\\ & =2 \cdot 4 \times 10^{9} / 60 \tag{1/2}\\ & =4 \cdot 0 \times 10^{7} \mathrm{~W} \tag{1}\\ & (=40 \mathrm{MW}) \end{align*}$	Accept J/s	2	
	(c)		$\begin{align*} & \% \text { Efficiency }=\mathrm{P}_{\text {out }} / \mathrm{P}_{\text {in }} \times 100 \tag{1/2}\\ & 36=\mathrm{P}_{\text {out }} / 4.0 \times 10^{7} \times 100 \tag{1/2}\\ & \mathrm{P}_{\text {out }}=1.44 \times 10^{7} \mathrm{~W} \tag{1}\\ &\left(\mathrm{P}_{\text {out }}\right.=14.4 \mathrm{MW}) \end{align*}$	consistent with (b)	2	
	(d)	(i)	1954 to $2014=60$ years $=2$ half-lives Double final activity twice to get initial activity $=16 \times 10^{12} \mathrm{~Bq}$ OR $\begin{align*} & 16 \times 10^{12} \mathrm{~Bq} \longleftarrow 8 \times 10^{12} \longleftarrow 4 \times 10^{12} \\ & 1954 \tag{2} \end{align*}$		2	
		(ii)	$\begin{gather*} \mathrm{A}=\mathrm{N} / \mathrm{t} \tag{1/2}\\ 4 \times 10^{12}=\mathrm{N} /(5 \times 60) \tag{1/2}\\ \mathrm{N}=4 \times 10^{12} \times 300 \\ \mathrm{~N}=1.2 \times 10^{15} \text { (nuclei) } \tag{1} \end{gather*}$		2	10

[END OF MARKING INSTRUCTIONS]

