

2013 Physics

Intermediate 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2013

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Part One: General Marking Principles for Physics Intermediate 2

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.

- (a) Marks for each candidate response must <u>always</u> be assigned in line with these general marking principles and the specific Marking Instructions for the relevant question.
- (b) Marking should always be positive ie, marks should be awarded for what is correct and not deducted for errors or omissions.

GENERAL MARKING ADVICE: Physics Intermediate 2

The marking schemes are written to assist in determining the "minimal acceptable answer" rather than listing every possible correct and incorrect answer. The following notes are offered to support Markers in making judgements on candidates' evidence, and apply to marking both end of unit assessments and course assessments.

Physics – Marking Issues

The current in a resistor is 1.5 amperes when the potential difference across it is 7.5 volts. Calculate the resistance of the resistor.

1.	Answers V = IR $7 \cdot 5 = 1 \cdot 5R$ $R = 5 \cdot 0 \Omega$	Mark + Comment ($\frac{1}{2}$) ($\frac{1}{2}$) (1)	Issue Ideal answer
2.	5.0 Ω	(2) Correct answer	GMI 1
3.	5.0	(1 ¹ / ₂) Unit missing	GMI 2 (a)
4.	4.0 Ω	(0) No evidence/wrong answer	GMI 1
5.	Ω	(0) No final answer	GMI 1
6.	$R = \frac{V}{I} = \frac{7.5}{1.5} = 4.0 \ \Omega$	(1 ¹ / ₂) Arithmetic error	GMI 7
7.	$R = \frac{V}{I} = 4 \cdot 0 \ \Omega$	(¹ / ₂) Formula only	GMI 4 and 1
8.	$R = \frac{V}{I} = \underline{\qquad} \Omega$	(¹ / ₂) Formula only	GMI 4 and 1
9.	$R = \frac{V}{I} = \frac{7.5}{1.5} = \underline{\qquad} \Omega$	(1) Formula + subs/No final answer	GMI 4 and 1
10.	$R = \frac{V}{I} = \frac{7.5}{1.5} = 4.0$	(1) Formula + substitution	GMI 2 (a) and 7
11.	$R = \frac{V}{I} = \frac{1.5}{7.5} = 5.0 \ \Omega$	(¹ / ₂) Formula but wrong substitution	GMI 5
12.	$R = \frac{V}{I} = \frac{75}{1.5} = 5.0 \ \Omega$	(¹ / ₂) Formula but wrong substitution	GMI 5
13.	$R = \frac{I}{V} = \frac{7.5}{1.5} = 5.0 \ \Omega$	(0) Wrong formula	GMI 5
14.	$V = IR 7.5 = 1.5 \times R R = 0.2 \Omega$	(1 ¹ / ₂) Arithmetic error	GMI 7
15.	$V = IR$ $R = \frac{I}{V} = \frac{1.5}{7.5} = 0.2 \ \Omega$	(¹ / ₂) Formula only	GMI 20

2013 Physics Intermediate 2

Marking scheme

Section A

1.	В	11.	В
2.	D	12.	С
3.	Е	13.	В
4.	D	14.	Е
5.	Е	15.	D
6.	А	16.	В
7.	D	17.	С
8.	А	18.	Е
9.	А	19.	А
10.	С	20.	С

Part Two: Marking Instructions for each Question

Section B

Q	uestion	Sample Answers and Mark Allocation	Notes	Inner Margin	Outer Margin
21		A plane of mass 750 kg is at rest on a runway. The engine applies a force of 4.50 kN.			
	(a)	Calculate the magnitude of the acceleration of the plane assuming there are no other forces acting on the plane at this point.			
		$F = ma \qquad (1/2)$			
		$4500 = 750 \times a$ (1/2)			
		$a = 6 \text{ m/s}^2 \tag{1}$		2	
	(b)	The required speed for take-off is 54 m/s.			
		Calculate the time it takes to reach this speed assuming the acceleration is constant.			
		$\mathbf{a} = \frac{\mathbf{v} - \mathbf{u}}{\mathbf{t}} \tag{1/2}$	Must be consistent with (a)		
		$6 = \frac{54 - 0}{t} $ (1/2)			
		$t = 54 \div 6$ t = 9 s (1)	Don't accept secs	2	
	(c)	In practice the acceleration is not constant. Give a reason for this. Other forces will act on the plane (e.g. drag) Mass decrease (fuel consumption)		1	5

Question	Sample Answers and Mark Allocation	Notes	Inner Margin	Outer Margin
22	A student uses a linear air track and an ultrasonic motion sensor to investigate a collision between two vehicles.			
	Ultrasonic Card motion reflector sensor Pin Cork Air track Vehicle X Vehicle Y To computer			
	 Vehicle Y is at rest before the collision. Vehicle X is given a push and then released. A pin on vehicle X sticks into a cork on vehicle Y causing them to join and move off together. The motion sensor measures the speed of vehicle X every 0.01 s. The graph shows the results obtained from the investigation after vehicle X has been released. 			
	$(y)_{00}$			
(a)	State the speed of ultrasonic waves in air. 340 m/s (from datasheet)	1 or 0 no half marks Must have unit	1	

Questio	on	Sample Answers and Mark Allocation	Notes	Inner Margin	Outer Margin
(b)	(i)	Describe the motion of vehicle X between points S and T . (Constant) <u>negative</u> acceleration (1)	Accept deceleration and "slowing down" Do not accept decelerating at a constant speed	1	
	(ii)	Calculate the distance travelled by vehicle X between points S and T. Distance = area under graph $(\frac{1}{2})$ Distance = $(0.05 \times 0.4) + (0.5 \times 0.05 \times 0.2)$ $(\frac{1}{2})$ Distance = $0.02 + 0.005$ Distance = 0.025 Distance = 0.025 m (1)	Average speed method is OK. $v = \frac{d}{t}$ $0.5 = \frac{d}{0.05}$ $d = 0.025 \text{ m}$	2	
	(iii)	Vehicle X has a mass of 0.50 kg. Use the law of conservation of momentum to show that vehicle Y has a mass of 0.25 kg. <u>TMB = TMA statement</u> (¹ / ₂) Momentum Before $0.50 \times 0.60 = 0.30$ (¹ / ₂) Momentum After $0.75 \times 0.40 = 0.30$ (1)	(Total) momentum before = (Total) momentum after Or $m_1v_1 = m_2v_2$ (1/2) $\binom{1/2}{0.50 \times 0.6} = (0.5 + m_B) \times 0.4$ $m_B = 0.25 \text{ kg}$ (Given)	2	
	(iv)	A Calculate the kinetic energy lost in this collision. $E_k = \frac{1}{2} mv^2$ (1/2) Before $= \frac{1}{2} \times 0.5 \times 0.6^2 = 0.09$ (1/2) After $= \frac{1}{2} \times 0.75 \times 0.4^2 = 0.06$ (1/2) Loss $= 0.09 - 0.06$ (1/2) = 0.03 J (1)		3	
		 B What happens to the lost kinetic energy? Turns into <u>heat</u> energy (in pin/cork) 	Sound alone 0	1	10

Q	uesti	on	Sample Answers and Mark Allocation	Notes	Inner Margin	Outer Margin
23			In a TV game show contestants are challenged to run off a horizontal platform and land in a rubber ring floating in a swimming pool. The platform is 2.8 m above the water surface.			
			2.8m Ring Water surface			
	(a)		A contestant has a mass of 60 kg. He runs off the platform with a horizontal			
		(i)	velocity of 2 m/s. He takes 0.75 s to reach the water surface in the centre of the ring.Calculate the horizontal distance X from the poolside to the centre of the ring.			
			d = vt (1/2)		2	
		(ii)	Calculate the vertical velocity of the contestant as he reaches the water surface. $\mathbf{a} = \frac{\mathbf{v} \cdot \mathbf{u}}{\mathbf{t}} \qquad (\frac{1}{2})$			
			$10 = \frac{\mathbf{v} \cdot 0}{0 \cdot 75} $ (1/2) $\mathbf{v} = 7 \cdot 5 \text{ m/s} $ (1)	If 9.8 used 7.35, 7.4 If 9.81 used 7.358, 7.36, 7.4	2	
			$v = 7.5 \text{ m/s} \tag{1}$			

Q	uestion	Sample Answers and Mark Allocatio	n	Notes	Inner Margin	Outer Margin
	(b)	Another contestant has a mass of 80 kg. Will she need to run faster, slower or at the same horizontal speed as the first contestar land in the ring? You must explain your answer.				
		Same All objects fall with the same (vertical) acceleration.	(1) (1)	Must have explanation to get first mark Will take the same time to reach the water	2	6

Q	uestior	n Sample Answers and Mark Allocation	Notes	Inner Margin	Outer Margin
24		In a garage, a mechanic lifts an engine from a car using a pulley system.			
	(a)	The mechanic pulls 4.5 m of chain with a constant force of 250 N.			
		Calculate the work done by the mechanic.			
		$E_{w} = Fd $ (1/2) $E_{w} = 250 \times 4.5 $ (1/2) $E_{w} = 1125 J $ (1)		2	
	(b)	The engine has a mass of 144 kg and is raised 0.75 m.			
		Calculate the gravitational potential energy gained by the engine.			
		$E_{p} = mgh$ $E_{p} = 144 \times 10 \times 0.75$ $E_{p} = 1080 \text{ J}$ (1/2) (1/2	9·8(1) for 'g' OK 1058 (1059) 1100	2	
	(c)	Calculate the percentage efficiency of the pulley system.			
		percentagefficiency= $\frac{\text{usefulE}_{\circ}}{\text{E}_{i}} \times 100$ (1/2)	Must be consistent with (a) and (b)		
		percentage fficiency = $\frac{1080}{1125} \times 100$ (½)	(94% if 9.8(1) used)	2	6
		percentagæfficiency=96% (1)			

Q	uesti	on	Sample Answers and Mark Allocation	Notes	Inner Margin	Outer Margin
25			The rating plate on a microwave oven shows the following data.			
		Ouput	Rating Plate le = 230V a.c. electrical pow er = 1196W incrowa ver pow er = 700W wave frequency = 2500 MHz			
	(a)		State what is meant by the term voltage. (The voltage of a supply is a measure of) the energy given to the charges in a circuit. (1)	Don't accept energy per electron Do accept: energy given to electrons energy per coulomb energy per charge	1	
	(b)	(i)	Calculate the input current. $I = P/V$ $(\frac{1}{2})$ $= 1196/230$ $(\frac{1}{2})$ $= 5 \cdot 2 A$ (1)	Accept Amps	2	
		(ii)	The microwave is used to heat a cup of milk for 1 minute 30 seconds. Calculate how much electrical charge passes through the flex in this time. Q = It (¹ / ₂) $= 5 \cdot 2 \times (60 + 30)$ (¹ / ₂) = 468 C (1)	Must be consistent with (b) (i)	2	
		(iii)	The milk of mass 0.25 kg absorbs 48 kJ of energy during the heating process. The specific heat capacity of milk is 3900 J/kg °C. Calculate the temperature rise in the milk. $E = mc\Delta T \qquad (\frac{1}{2})$ $48000 = 0.25 \times 3900 \times \Delta T \qquad (\frac{1}{2})$	49, 50, 49.23		
			$\Delta T = 49 \cdot 2^{\circ} C \tag{1}$		2	

Question	Sample Answers and Mark Allocation	 Inner Margin	Outer Margin
(c)	Calculate the wavelength of the microwaves. $\lambda = \nu/f \qquad (l/2)$ $= 3 \times 10^8/2500 \times 10^6 \qquad (l/2)$ $= 0.12 \text{ m} \qquad (1)$	2	9

Q	uestion	Sample Answers and Mark Allocation	Notes	Inner Margin	Outer Margin
26		An overhead projector contains a lamp and a motor that operates a cooling fan.			
		A technician has a choice of two lamps to fit in the projector.			
		Lamp A: rated 24.0 V, 2.5 Ω			
		Lamp B: rated $24.0 \text{ V}, 5.4 \Omega$			
	(a)	Which lamp gives a brighter light when operating at the correct voltage?			
		Explain your answer.			
		Lamp A (1)			
		It has the lowest resistance/highest current/greatest power (1)	one of three	2	_
	(b)	Calculate the power developed by lamp A when it is operating normally.			
		$P = V^{2}/R$ $= 24^{2}/2.5$ $= 230 \text{ W}$ (1/2) (1/2) (1/2)	$V = I R and P = I V (\frac{1}{2})$ (I = 9.6 A) 230.4 W	2	
	(c)	The overhead projector plug contains a fuse.			
		Draw the circuit symbol for a fuse.			
				1	
		Draw the circuit symbol for a fuse.			1

Question	Sample Answers and Mark Allocation	Notes	Inner Margin	Outer Margin
(d)	The technician builds a test circuit containing a resistor and a motor, as shown in Circuit 1 . $\begin{array}{c} + 0 \\ 12.0 \lor \\ - 0 \\ \hline \\$			
(i)	State the voltage across the motor. 12 V	1 or 0 unit required	1	
(ii)	Calculate the combined resistance of the resistor and the motor. $1/R_p = 1/R_1 + 1/R_2$ (¹ / ₂) = 1/8 + 1/24 (¹ / ₂) = 4/24 $R_p = 24/4$ $= 6 \Omega$ (1)	- ¹ /2 if rounding within calculation	2	
(e)	The resistor and the motor are now connected in series, as shown in Circuit 2 . $12.0 \lor$ $12.0 \lor$			
	Voltage across motor is less Motor has less power(1)	any one of four	2	10

Question	Sample Answers and Mark Allocation	Notes	Inner Margin	Outer Margin
27	A mains operated mobile phone charger contains a transformer. Part of the circuit is shown below. $\qquad \qquad $	-0		
(a)	The primary coil of the transformer has 1725 turns. The secondary coil has 45 turns. Calculate the voltage across the secondary coil. $N_s/N_p = V_s/V_p$ (4)	(2)		
	$45/1725 = V_s/230 \qquad (4)$ $V_s = 6 \text{ V} \qquad (1)$	(2)	2	
(b)		(2) or $I_p N_s = I_s N_p$ (2) must be consistent with (a) (3) 0.02 A 0.021 A 0.0209 A	2	
(c)	What is the frequency of the mains supply in the UK?			
	50 Hz	-½ if no unit	1	

Q	uesti	on	Sample Answers and Mark Allocation	Notes	Inner Margin	Outer Margin
	(d)		230 V a.c. is the quoted value of the mains supply in the UK.State how the quoted value compares with the peak value.The quoted value is smaller than the peak value.	Accept smaller on its own	1	6
28	(a)	(i)	A photographic darkroom has a buzzer that sounds when the light level in the room is too high. The circuit diagram for the buzzer system is shown below. $\downarrow \downarrow $			
			X = (NPN) transistor	0 marks for MOSFET or PNP transistor	1	
		(ii)	What is the purpose of component X in the circuit? To act as a <u>switch</u>	To turn on the buzzer 0 marks To operate the buzzer 0 marks	1	
	(b)		The darkroom door is opened and the light level increases. Explain how the circuit operates to sound the buzzer. Resistance of LDR reduces (½) so voltage across LDR reduces (½) Voltage across variable resistor/R increases (1) When voltage across variable resistor/R reaches (0.7 V) transistor switches buzzer on. (1)	Accept 'when voltage is high enough'	3	

Question	Sample Answers a	nd Mark Allocation	Notes	Inner Margin	Outer Margin
(c)	The table shows how th varies with light level.	ne resistance of the LDR			
	Light level (units)	LDR Resistance (Ω)			
	20	4500			
	50	3500			
	80	2500			
	The light level increase Calculate the current in 80 units: resistance of Total resistance = 250 = 307	the LDR. LDR = 2500 (Ω) (¹ / ₂)			
	$I = V/R = 5/3070 = 1.63 \times 10^{-3} \text{ A or } 1.53 $	$\binom{1/2}{(1/2)}$	1 · 6 mA 1 · 63 mA 1 · 629 mA	3	
(d)	What is the purpose of in this circuit?	the variable resistor R			
	The variable resistor i at which the transistor set the level at which t	r will switch on or to		1	9

Q	uestion	Sample Answers and Mark Allocation	Notes	Inner Margin	Outer Margin
29		A lighthouse uses a converging lens to produce a beam of light.			
		Lamp			
	(a)	The lamp is placed at the focal point of the lens.			
		Copy and complete the diagram to show the paths of the light rays after they pass through the lens.			
			ignore rays through lens rays must be parallel and straight – PJ -½ no arrows	1	
	(b)	The power of the lens is 6.25 D.			
		Calculate its focal length.			
		focal length = 1/lens power $(\frac{1}{2})$ = 1/6.25 $(\frac{1}{2})$ = 0.16 m (1)		2	
	(c)	The lamp flashes once every 7.5 seconds. What is the name given to the time between each flash?			
		The period (1)	Accept time period	1	

Question	Sample Answers and Mark Allocation	Notes	Inner Margin	Outer Margin
(d)	The lighthouse also uses a foghorn to alert ships. A ship is at a distance of 2.04 km from the lighthouse.			
	Calculate the time taken for the sound to reach			
	the ship. $d = v \times t$ (1/2 $2040 = 340 \times t$ (1/2 t = 2040/340 t = 6 s (1))	2	
(e)	Light waves are transverse waves. Sound waves are longitudinal waves. Describe each type of wave in terms of vibrations. With <u>transverse</u> waves the vibrations are at <u>right angles</u> to the <u>direction</u> of travel. (1) With <u>longitudinal</u> waves the vibrations			
	are in the <u>same direction</u> of travel. (1))	2	8

Q	uestion	Samp	le Ansv	wers and	l Mark	Allocatio	n	Notes	Inner Margin	Outer Margin
30	(a)	A hospital equivalen patient. T absorbed State wha factor. A measur radiation	t dose of This is of dose by tt is mea re of th	of radiati lone by r y a radiat ant by a r	on abso nultiply ion wei radiatio	orbed by a ving the ghting fa n weighti	ctor.	If stated harmful/damaging it must be qualified i.e. to living tissue or	1	
	(b)	During a s	scan of	the natie	ent's br	ain the		similar		-
		absorbed mass of th	dose is	measure	d as 1.5		'he			
		Calculate during the		ergy abso	orbed by	y the brain	1			
		$\mathbf{D} = \frac{\mathbf{E}}{\mathbf{m}}$					(1/2)			
		$1 \cdot 5 \times 10^{-1}$	$-3 = \frac{1}{1}$	E · 4			(1/2)			
		$\mathbf{E} = 2 \cdot 1$	×10 ⁻³ .]	I			(1)		2	
	(c)	chemical	is injec	dical procedure, a radioactiv jected into a patient. is prepared by the technicia						
		from a sou MBq.								
		The sourc								
		Calculate later.	the act	ivity of t	he sour	ce 18 hou	rs			
		Time (hr)	0	6	12	18		Accept other methods if correct Answer not made clear $-\frac{1}{2}$		
		Activity MBq	320	160	80	40				
		halving a 3 times Answer =	-				(1/2) (1/2) (1)		2	5

Q	uesti	on	Sample Answers and Mark Allocation	Notes	Inner Margin	Outer Margin
31	(a)		A student is researching information on nuclear reactors.			
			The following diagram is found on a website.			
			It illustrates a type of reaction that takes place in a reactor.			
		(i)	What type of nuclear reaction is shown in the diagram?			
			Fission	Accept induced fission Chain reaction 0 marks Must be spelt correctly	1	
		(ii)	The labels have been omitted at positions P , Q , R and S on the diagram. State clearly what each of these labels should be. P (slow) neutron $(\frac{1}{2})$ Q (fissionable) <u>nucleus</u> $(\frac{1}{2})$			
			R (fast) neutron (½) S fission fragment/daughter product (½)	Smaller nucleus	2	
					1	

Question	Sample Answers and Mark Allocation	Notes	Inner Margin	Outer Margin
(c)	Disposal of some types of radioactive waste from nuclear reactors is particularly difficult.Give a reason for this difficulty.Stays (highly) radioactive for a (very) long time (1)		1	
(d)	Electricity can be generated using fossil fuels or nuclear fuel. State one advantage of using nuclear fuel. Any correct answer (1) eg Much more energy per kg of fuel Does not produce greenhouse/acidic gases	<u>Not</u> Cheaper Cleaner Renewable Efficient	1	6

[END OF MARKING INSTRUCTIONS]