2013 Physics

Intermediate 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2013
The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Part One: General Marking Principles for Physics Intermediate 2

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.
(a) Marks for each candidate response must always be assigned in line with these general marking principles and the specific Marking Instructions for the relevant question.
(b) Marking should always be positive ie, marks should be awarded for what is correct and not deducted for errors or omissions.

GENERAL MARKING ADVICE: Physics Intermediate 2

The marking schemes are written to assist in determining the "minimal acceptable answer" rather than listing every possible correct and incorrect answer. The following notes are offered to support Markers in making judgements on candidates' evidence, and apply to marking both end of unit assessments and course assessments.

Physics - Marking Issues

The current in a resistor is 1.5 amperes when the potential difference across it is 7.5 volts. Calculate the resistance of the resistor.

Answers

1. $\quad V=I R$
$7 \cdot 5=1 \cdot 5 R$
$R=5 \cdot 0 \Omega$
2. 5.0Ω
3. $5 \cdot 0$
4. $4 \cdot 0 \Omega$
5. Ω
6. $R=\frac{V}{I}=\frac{7 \cdot 5}{1.5}=4 \cdot 0 \Omega$
7. $R=\frac{V}{I}=4 \cdot 0 \Omega$
(1/2) Formula only
(1/2) Formula only
(1) Formula + subs/No final answer
(1) Formula + substitution
(1/2) Formula but wrong substitution
(1/2) Formula but wrong substitution
(0) Wrong formula
(11⁄2) Arithmetic error
(1/2) Formula only
8. $R=\frac{V}{I}=$ \qquad Ω
9. $R=\frac{V}{I}=\frac{7 \cdot 5}{1 \cdot 5}=4 \cdot 0$
10. $R=\frac{V}{I}=\frac{1 \cdot 5}{7 \cdot 5}=5 \cdot 0 \Omega$
11. $R=\frac{V}{I}=\frac{75}{1.5}=5.0 \Omega$
12. $R=\frac{I}{V}=\frac{7 \cdot 5}{1.5}=5 \cdot 0 \Omega$
13. $\quad V=I R \quad 7.5=1.5 \times R \quad R=0.2 \Omega$
14. $V=I R$
$R=\frac{I}{V}=\frac{1 \cdot 5}{7 \cdot 5}=0.2 \Omega$

Issue
Ideal answer

GMI 1
GMI 2 (a)
GMI 1
GMI 1

GMI 7

GMI 4 and 1

GMI 4 and 1

GMI 2 (a) and 7

GMI 5

GMI 5

GMI 5

GMI 7

GMI 20

2013 Physics Intermediate 2
Marking scheme

Section A

1. B 11. B
2. D
3. C
4. E
5. B
6. D
7. E
8. E
9. D
10. A
11. B
12. D
13. C
14. A
15. E
16. A
17. A
18. C
19. C

Part Two: Marking Instructions for each Question

Section B

Question		Sample Answers and Mark Allocation	Notes	Inner Margin	Outer Margin
21	(a)	A plane of mass 750 kg is at rest on a runway. The engine applies a force of 4.50 kN . Calculate the magnitude of the acceleration of the plane assuming there are no other forces acting on the plane at this point. $\begin{align*} & F=m a \tag{1/2}\\ & 4500=750 \times a \tag{1/2}\\ & a=6 \mathrm{~m} / \mathrm{s}^{2} \tag{1} \end{align*}$		2	
	(b)	The required speed for take-off is $54 \mathrm{~m} / \mathrm{s}$. Calculate the time it takes to reach this speed assuming the acceleration is constant. $\begin{align*} & a=\frac{v-u}{t} \tag{1/2}\\ & 6=\frac{54-0}{t} \tag{1/2}\\ & t=54 \div 6 \\ & t=9 \mathrm{~s} \tag{1} \end{align*}$	Must be consistent with (a) Don't accept secs	2	
	(c)	In practice the acceleration is not constant. Give a reason for this. Other forces will act on the plane (e.g. drag) Mass decrease (fuel consumption)		1	5

Question		Sample Answers and Mark Allocation	Notes	Inner Margin	Outer Margin
(b)	(i)	Describe the motion of vehicle X between points \mathbf{S} and \mathbf{T}. (Constant) negative acceleration	Accept deceleration and "slowing down" Do not accept decelerating at a constant speed	1	
	(ii)	Calculate the distance travelled by vehicle X between points \mathbf{S} and \mathbf{T}. Distance $=$ area under graph (1/2) Distance $=(0.05 \times 0.4)+(0.5 \times 0.05 \times 0.2)$ Distance $=\mathbf{0 . 0 2 + 0 . 0 0 5}$ Distance $=0.025$ Distance $=\mathbf{0 . 0 2 5} \mathrm{m}$	Average speed method is OK. $\begin{align*} v & =\frac{d}{t} \tag{1/2}\\ 0.5 & =\frac{d}{0.05} \\ \mathrm{~d} & =0.025 \mathrm{~m} \tag{1} \end{align*}$	2	
	(iii)	Vehicle X has a mass of 0.50 kg . Use the law of conservation of momentum to show that vehicle Y has a mass of 0.25 kg . $\underline{T M B=T M A ~ s t a t e m e n t}$ Momentum Before $\mathbf{0 . 5 0 \times 0 . 6 0}=\mathbf{0 . 3 0}$ Momentum After $0.75 \times \mathbf{0 . 4 0}=\mathbf{0 . 3 0}$	$($ Total $)$ momentum before $=$ (Total) momentum after $\begin{equation*} \text { Or } \mathrm{m}_{1} \mathrm{v}_{1}=\mathrm{m}_{2} \mathrm{v}_{2} \tag{1/2} \end{equation*}$ $\begin{align*} & \frac{(1 / 2)}{(1)} \tag{1/2}\\ & 0 \cdot 50 \times 0 \cdot 6=\left(0 \cdot 5+\mathrm{m}_{\mathrm{B}}\right) \times 0 \cdot 4 \\ & \left.\mathrm{~m}_{\mathrm{B}}=0.25 \mathrm{~kg} \quad \text { (Given }\right) \end{align*}$	2	
	(iv)	A Calculate the kinetic energy lost in this collision. $\begin{align*} & E_{k}=1 / 2 m v^{2} \tag{1/2}\\ & \text { Before }=1 / 2 \times 0.5 \times 0.6^{2}=0.09 \tag{1/2}\\ & \text { After }=1 / 2 \times 0.75 \times 0.4^{2}=0.06 \tag{1/2}\\ & \text { Loss }=0.09-0.06 \tag{1/2}\\ &=0.03 \mathrm{~J} \tag{1} \end{align*}$		3	
		B What happens to the lost kinetic energy? Turns into heat energy (in pin/cork)	Sound alone 0	1	10

Question			Sample Answers and Mark Allocation	Notes	Inner Margin	Outer Margin
23	(a)	(i)	In a TV game show contestants are challenged to run off a horizontal platform and land in a rubber ring floating in a swimming pool. The platform is 2.8 m above the water surface. A contestant has a mass of 60 kg . He runs off the platform with a horizontal velocity of $2 \mathrm{~m} / \mathrm{s}$. He takes 0.75 s to reach the water surface in the centre of the ring. Calculate the horizontal distance X from the poolside to the centre of the ring. $\begin{align*} d & =v t \tag{1/2}\\ d & =2 \times 0.75 \tag{1/2}\\ d & =1.5 \mathrm{~m} \tag{1} \end{align*}$		2	
		(ii)	Calculate the vertical velocity of the contestant as he reaches the water surface. $\begin{align*} & a=\frac{v-u}{t} \tag{1/2}\\ & 10=\frac{v-0}{0 \cdot 75} \tag{1/2}\\ & v=7.5 \mathrm{~m} / \mathrm{s} \tag{1} \end{align*}$	If 9.8 used $7.35,7.4$ If 9.81 used 7.358, 7.36, 7.4	2	

Questio	Sample Answers and Mark Allocation	Notes	Inner Margin	Outer Margin
(b)	Another contestant has a mass of 80 kg . Will she need to run faster, slower or at the same horizontal speed as the first contestant to land in the ring? You must explain your answer. Same All objects fall with the same (vertical) acceleration.	Must have explanation to get first mark Will take the same time to reach the water	2	6

Question		Sample Answers and Mark Allocation	Notes	Inner Margin	Outer Margin
24	(a)	In a garage, a mechanic lifts an engine from a car using a pulley system. The mechanic pulls 4.5 m of chain with a constant force of 250 N . Calculate the work done by the mechanic. $\begin{align*} & \boldsymbol{E}_{w}=\boldsymbol{F d} \tag{1/2}\\ & E_{w}=250 \times 4 \cdot 5 \tag{1/2}\\ & E_{w}=1125 \mathrm{~J} \tag{1} \end{align*}$		2	
	(b)	The engine has a mass of 144 kg and is raised 0.75 m . Calculate the gravitational potential energy gained by the engine. $\begin{align*} & E_{p}=m g h \tag{1/2}\\ & E_{p}=144 \times 10 \times 0.75 \tag{1/2}\\ & E_{p}=1080 \mathrm{~J} \tag{1} \end{align*}$	$\begin{aligned} & \text { 9•8(1) for ' } \mathrm{g} \text { ' OK } 1058 \text { (1059) } \\ & 1100 \end{aligned}$	2	
	(c)	Calculate the percentage efficiency of the pulley system. percentagefficiency $=\frac{\text { usefulE }_{\circ}}{\mathbf{E}_{\mathrm{i}}} \times 100$ percentagefficiency $=\frac{1080}{1125} \times 100$ percentagefficiency $=\mathbf{9 6 \%}$	Must be consistent with (a) and (b) (94\% if 9.8(1) used)	2	6

Question			Sample Answers and Mark Allocation	Notes	Inner Margin	Outer Margin
25	(a)	The rating plate on a microwave oven shows the following data. State what is meant by the term voltage. (The voltage of a supply is a measure of) the energy given to the charges in a circuit. (1)		Don't accept energy per electron Do accept: energy given to electrons energy per coulomb energy per charge	1	
	(b)	(i)	Calculate the input current. $\begin{align*} I & =P / V \tag{1/2}\\ & =1196 / 230 \tag{1/2}\\ & =5 \cdot 2 \mathrm{~A} \tag{1} \end{align*}$	Accept Amps	2	
		(ii)	The microwave is used to heat a cup of milk for 1 minute 30 seconds. Calculate how much electrical charge passes through the flex in this time. $\begin{align*} Q & =I t \tag{1/2}\\ & =5.2 \times(60+30) \tag{1/2}\\ & =468 \mathrm{C} \tag{1} \end{align*}$	Must be consistent with (b) (i)	2	
		(iii)	The milk of mass 0.25 kg absorbs 48 kJ of energy during the heating process. The specific heat capacity of milk is $3900 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}$. Calculate the temperature rise in the milk. $\begin{align*} & E \quad=m c \Delta T \tag{1/2}\\ & 48000=0 \cdot 25 \times 3900 \times \Delta T \tag{1/2}\\ & \Delta T \quad=49 \cdot 2^{\circ} \mathrm{C} \tag{1} \end{align*}$	49, 50, 49.23	2	

Questi	Sample Answers and Mark Allocation	Notes	Inner Margin	Outer Margin
(c)	Calculate the wavelength of the microwaves. $\begin{align*} \lambda & =v / f \tag{1/2}\\ & =3 \times 10^{8} / 2500 \times 10^{6} \tag{1/2}\\ & =0 \cdot 12 \mathrm{~m} \tag{1} \end{align*}$		2	9

Question		Sample Answers and Mark Allocation	Notes	Inner Margin	Outer Margin
26	(a)	An overhead projector contains a lamp and a motor that operates a cooling fan. A technician has a choice of two lamps to fit in the projector. Lamp A: rated $24.0 \mathrm{~V}, 2.5 \Omega$ Lamp B: rated $24.0 \mathrm{~V}, 5.4 \Omega$ Which lamp gives a brighter light when operating at the correct voltage? Explain your answer. Lamp A It has the lowest resistance/highest current/greatest power	one of three	2	
	(b)	Calculate the power developed by lamp A when it is operating normally. $\begin{align*} P & =V^{2} / R \tag{1/2}\\ & =24^{2} / 2 \cdot 5 \tag{1/2}\\ & =230 \mathrm{~W} \tag{1} \end{align*}$	$\begin{aligned} & \mathrm{V}=\mathrm{IR} \text { and } \mathrm{P}=\mathrm{IV} \quad(1 / 2) \\ & (\mathrm{I}=9.6 \mathrm{~A}) \\ & 230 \cdot 4 \mathrm{~W} \end{aligned}$	2	
	(c)	The overhead projector plug contains a fuse. Draw the circuit symbol for a fuse.		1	

Question		Sample Answers and Mark Allocation	Notes	Inner Margin	Outer Margin
(d)	(i)	The technician builds a test circuit containing a resistor and a motor, as shown in Circuit 1. State the voltage across the motor. 12 V	1 or 0 unit required	1	
	(ii)	Calculate the combined resistance of the resistor and the motor. $\begin{align*} 1 / \mathrm{R}_{\mathrm{p}} & =1 / \mathrm{R}_{1}+1 / \mathrm{R}_{2} \tag{1/2}\\ & =1 / 8+1 / 24 \tag{1/2}\\ & =4 / 24 \\ \mathbf{R}_{\mathrm{p}} & =24 / 4 \\ & =6 \Omega \tag{1} \end{align*}$	$-1 / 2$ if rounding within calculation	2	
(e)		The resistor and the motor are now connected in series, as shown in Circuit 2. State how this affects the speed of the motor compared to Circuit 1. Explain your answer. The motor speed will reduce The (combined) resistance (of the circuit) is now higher/current is lower. Voltage across motor is less Motor has less power	any one of four	2	10

Question			Sample Answers and Mark Allocation	Notes	Inner Margin	Outer Margin
27	(a)		A mains operated mobile phone charger contains a transformer. Part of the circuit is shown below. The primary coil of the transformer has 1725 turns. The secondary coil has 45 turns. Calculate the voltage across the secondary coil. $\begin{array}{r} N_{s} / N_{p}=V_{s} / V_{p} \\ 45 / 1725=V_{s} / 230 \tag{1/2}\\ V_{s}=6 \mathrm{~V} \end{array}$		2	
	(b)		When the charger is connected to a mobile phone the output current is 0.80 A . Calculate the current in the primary coil. $\begin{align*} I_{p} V_{p} & =I_{s} V_{s} \tag{1/2}\\ I_{p} \times 230 & =0.80 \times 6 \tag{1/2}\\ I_{p} & =(0.80 \times 6) / 230 \\ & =0.021 \mathrm{~A} \text { or } 21 \mathrm{~mA} \tag{1} \end{align*}$	or $I_{p} N_{s}=I_{s} N_{p}$ must be consistent with (a) $\begin{aligned} & 0.02 \mathrm{~A} \\ & 0.021 \mathrm{~A} \\ & 0.0209 \mathrm{~A} \end{aligned}$	2	
	(c)		What is the frequency of the mains supply in the UK? 50 Hz	$-1 / 2$ if no unit	1	

Question			Sample Answers and Mark Allocation	Notes	Inner Margin	Outer Margin
	(d)		230 V a.c. is the quoted value of the mains supply in the UK. State how the quoted value compares with the peak value. The quoted value is smaller than the peak value.	Accept smaller on its own	1	6
28	(a)	(i)	A photographic darkroom has a buzzer that sounds when the light level in the room is too high. The circuit diagram for the buzzer system is shown below. Name component X. $X=(\mathbf{N P N})$ transistor	0 marks for MOSFET or PNP transistor	1	
		(ii)	What is the purpose of component X in the circuit? To act as a switch	To turn on the buzzer 0 marks To operate the buzzer 0 marks	1	
	(b)		The darkroom door is opened and the light level increases. Explain how the circuit operates to sound the buzzer. Resistance of LDR reduces so voltage across LDR reduces Voltage across variable resistor/R increases reaches (0.7 V) transistor switches buzzer on.	Accept 'when voltage is high enough'	3	

Question		Sample Answers and Mark Allocation	Notes	Inner Margin	Outer Margin
29	(a)	A lighthouse uses a converging lens to produce a beam of light. The lamp is placed at the focal point of the lens. Copy and complete the diagram to show the paths of the light rays after they pass through the lens.	ignore rays through lens rays must be parallel and straight PJ $-1 / 2$ no arrows	1	
	(b)	The power of the lens is $6 \cdot 25 \mathrm{D}$. Calculate its focal length. $\begin{align*} \text { focal length } & =1 / \text { lens power } \tag{1/2}\\ & =1 / 6 \cdot 25 \tag{1/2}\\ & =0 \cdot 16 \mathrm{~m} \tag{1} \end{align*}$		2	
	(c)	The lamp flashes once every 7.5 seconds. What is the name given to the time between each flash? The period	Accept time period	1	

Questi	Sample Answers and Mark Allocation	Notes	Inner Margin	Outer Margin
(d)	The lighthouse also uses a foghorn to alert ships. A ship is at a distance of 2.04 km from the lighthouse. Calculate the time taken for the sound to reach the ship. $\begin{align*} d & =v \times t \tag{1/2}\\ 2040 & =340 \times t \tag{1/2}\\ t & =2040 / 340 \\ t & =6 \mathrm{~s} \tag{1} \end{align*}$	$6.0 \mathrm{~s}$	2	
(e)	Light waves are transverse waves. Sound waves are longitudinal waves. Describe each type of wave in terms of vibrations. With transverse waves the vibrations are at right angles to the direction of travel. With longitudinal waves the vibrations are in the same direction of travel.		2	8

Question			Sample Answers and Mark Allocation					Notes	Inner Margin	Outer Margin
30	(a)		A hospital radiographer calculates the equivalent dose of radiation absorbed by a patient. This is done by multiplying the absorbed dose by a radiation weighting factor. State what is meant by a radiation weighting factor. A measure of the biological effect of a radiation.					If stated harmful/damaging it must be qualified i.e. to living tissue or similar	1	
	(b)		During a scan of the patient's brain, the absorbed dose is measured as 1.5 mGy . The mass of the brain is 1.4 kg . Calculate the energy absorbed by the brain during the scan. $\begin{align*} & \mathrm{D}=\frac{\mathrm{E}}{\mathrm{~m}} \tag{1/2}\\ & \mathbf{1 . 5 \times 1 0 ^ { - 3 }}=\frac{\mathrm{E}}{\mathbf{1 \cdot 4}} \tag{1/2}\\ & \mathbf{E}=\mathbf{2} \cdot \mathbf{1} \times \mathbf{1 0}^{-3} \mathrm{~J} \tag{1} \end{align*}$						2	
	(c)		In another medical procedure, a radioactive chemical is injected into a patient. The chemical is prepared by the technician from a source which has an activity of 320 MBq. The source has a half-life of 6 hours. Calculate the activity of the source 18 hours later.					Accept other methods if correct Answer not made clear - $1 / 2$	2	5

Question			Sample Answers and Mark Allocation	Notes	Inner Margin	Outer Margin
31	(a)	(i)	A student is researching information on nuclear reactors. The following diagram is found on a website. It illustrates a type of reaction that takes place in a reactor. What type of nuclear reaction is shown in the diagram? Fission	Accept induced fission Chain reaction 0 marks Must be spelt correctly	1	
		(ii)	The labels have been omitted at positions $\mathbf{P}, \mathbf{Q}, \mathbf{R}$ and \mathbf{S} on the diagram. State clearly what each of these labels should be.	Smaller nucleus	2	
	(b)		Name the part of the reactor whose function is to prevent release of radiation beyond the reactor. Containment vessel		1	

Questis	Sample Answers and Mark Allocation	Notes	Inner Margin	Outer Margin
(c)	Disposal of some types of radioactive waste from nuclear reactors is particularly difficult. Give a reason for this difficulty. Stays (highly) radioactive for a (very) long time		1	
(d)	Electricity can be generated using fossil fuels or nuclear fuel. State one advantage of using nuclear fuel. Any correct answer eg Much more energy per kg of fuel Does not produce greenhouse/acidic gases	Not Cheaper Cleaner Renewable Efficient	1	6

[END OF MARKING INSTRUCTIONS]

