Electronics

Introduction

- Electronic systems have 3 parts
- Input
- Process
- Output
- There are 2 types of systems:
- Analogue
- Digital

Output Devices

These turn E_E into some other form

Analogue Motor, Bulb, Loudspeaker

Digital LED, Relay, Solenoid

Input Devices

- 2 main types
- Change the size of the input voltage
- Switch, Capacitor,
- LDR, Thermistor
- and

Input Devices

Energy Changers

Thermocouple, MicrophoneSolar Cell

LDR

As Light Intensity Increases
 Resistance Decreases

Thermistor

As Temperature increases the resistance decreases

Capacitors

Provide timing delays

Voltage Dividers

LDR in Voltage Divider

 As light increases, resistance of LDR decreases, voltage across it decreases,

Thermistor

 As temperature decreases, resistance of thermistor increases, voltage across thermistor increases, V_{out} decreases

Capacitor

Capacitor charges up

V_{out} increases

Switches

When switch is closed

V_{out} is low

Process Devices

Analogue : Amplifier

Digital : Transistor

NPN Transistor

V be > 0.7 V
Transistor is switched on

Collector Base Emitter

Alarm Circuits

Light Intensity decreases
R _{Idr} increases
V _{Idr} increases
V _{be} increases
V _{be} > 0.7 V
Transistor switches on
Current flows through LED

Alarm Circuits

Temperature increases R thermistor decreases V thermistor decreases V resistor increases V be increases V_{be} > 0.7 V Transistor switches on Current flows through LED