Force and acceleration

If the forces acting on an object are unbalanced then the object will accelerate, like these wrestlers:

Force $($ in $N)=$ Mass $($ in kg$) \times$ Acceleration $\left(i n \mathrm{~ms}^{-2}\right)$

Force, mass and acceleration

1) A force of 1000 N is applied to push a mass of 500 kg . How quickly does it accelerate?
2) A force of 3000 N acts on a car to make it accelerate by $1.5 \mathrm{~ms}^{-2}$. How heavy is the car?
3) A car accelerates forward at a rate of $5 \mathrm{~ms}^{-2}$. If it weighs 500 kg how
 much driving force is the engine applying?
4) A force of 10 N is applied by a boy while lifting a 20 kg mass. How much does it accelerate by?

Terminal Velocity

Consider a skydiver:

1) At the start of his jump the air resistance is \qquad so he
\qquad downwards.
2) As his speed increases his air resistance will \qquad

3) Eventually the air resistance will be big enough to \qquad the skydiver's weight. At this point the forces are balanced so his speed becomes \qquad - this is called TERMINAL VELOCITY

Terminal Velocity

Consider a skydiver:
4) When he opens his parachute the air resistance suddenly \qquad causing him to start \qquad .

5) Because he is slowing down his air resistance will \qquad again until it balances his \qquad The skydiver has now reached a new, lower \qquad .

Velocity-time graph for terminal velocity...

Velocity
Parachute opens -
Speed increases...

Time
New, lower terminal
Diver hits the ground velocity reached

Weight vs. Mass

Earth's Gravitational Field Strength is $9.8 \mathrm{~N} \mathrm{~kg}^{-1}$. In other words, a 1 kg mass is pulled downwards by a force of 9.8 N .

Weight $=$ Mass \times Gravitational Field Strength (in N) (in kg) (in Nkg^{-1})

1) What is the weight on Earth of a book with mass 2 kg ?
2) What is the weight on Earth of an apple with mass 100g?
3) Dave weighs 700 N . What is his mass?
4) On the moon the gravitational field strength is $1.6 \mathrm{~N} \mathrm{~kg}^{-1}$. What will Dave weigh if he stands on the moon?
