2012 Physics

Advanced Higher

Finalised Marking Instructions

© Scottish Qualifications Authority 2012

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Delivery: Exam Operations.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Delivery: Exam Operations may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Part One: General Marking Principles for Physics - Advanced Higher

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.
(a) Marks for each candidate response must always be assigned in line with these general marking principles and the specific Marking Instructions for the relevant question. If a specific candidate response does not seem to be covered by either the principles or detailed Marking Instructions, and you are uncertain how to assess it, you must seek guidance from your Team Leader/Principal Assessor.

1. Numerical Marking

(a) The fine divisions of marks shown in the marking scheme may be recorded within the body of the script beside the candidate's answer. If such marks are shown they must total to the mark in the inner margin.
(b) The number recorded should always be the marks being awarded.

The number out of which a mark is scored SHOULD NEVER BE SHOWN AS A DENOMINATOR. ($1 / 2$ mark will always mean one half mark and never 1 out of 2.)
(c) Where square ruled paper is enclosed inside answer books it should be clearly indicated that this item has been considered. Marks awarded should be transferred to the script booklet inner margin and marked G.
(d) The total for the paper should be rounded up to the nearest whole number.
2. Other Marking Symbols which may be used

TICK - Correct point as detailed in scheme, includes data entry.
SCORE THROUGH - Any part of answer which is wrong. (For a block of wrong answer indicate zero marks.) Excess significant figures.
INVERTED VEE - A point omitted which has led to a loss of marks.
WAVY LINE - Under an answer worth marks which is wrong only because a wrong answer has been carried forward from a previous part.
"G" - Reference to a graph on separate paper. You MUST show a mark on the graph paper and the SAME mark on the script.
"X" - Wrong Physics

* - Wrong order of marks

No other annotations are allowed on the scripts.
(a) No marks are allowed for a description of the wrong experiment or one which would not work
Full marks should be given for information conveyed correctly by a sketch.
(b) Surplus answers: where a number of reasons, examples etc are asked for and a candidate gives more than the required number then wrong answers may be treated as negative and cancel out part of the previous answer.
(c) Full marks should be given for a correct answer to a numerical problem even if the steps are not shown explicitly. The part marks shown in the scheme are for use in marking partially correct answers.

However, when the numerical answer is given or a derivation of a formula is required every step must be shown explicitly.
(d) Where 1 mark is shown for the final answer to a numerical problem $1 / 2$ mark may be deducted for an incorrect unit.
(e) Where a final answer to a numerical problem is given in the form 3^{-6} instead of 3×10^{-6} then deduct $1 / 2$ mark.
(f) Deduct $1 / 2$ mark if an answer is wrong because of an arithmetic slip.
(g) No marks should be awarded in a part question after the application of a wrong physics principle (wrong formula, wrong substitution) unless specifically allowed for in the marking scheme - eg marks can be awarded for data retrieval.
(h) In certain situations, a wrong answer to a part of a question can be carried forward within that part of the question. This would incur no further penalty provided that it is used correctly. Such situations are indicated by a horizontal dotted line in the marking instructions.

Wrong answers can always be carried forward to the next part of a question, over a solid line without penalty.

The exceptions to this are:

- where the numerical answer is given
- where the required equation is given.
(i) $1 / 2$ mark should be awarded for selecting a formula.
(j) Where a triangle type "relationship" is written down and then not used or used incorrectly then any partial $1 / 2$ mark for a formula should not be awarded.
(k) In numerical calculations, if the correct answer is given then converted wrongly in the last line to another multiple/submultiple of the correct unit then deduct $1 / 2$ mark.
(1) Significant figures.

Data in question is given to 3 significant figures.
Correct final answer is 8.16 J .
Final answer $8 \cdot 2 \mathrm{~J}$ or $8 \cdot 158 \mathrm{~J}$ or $8 \cdot 1576 \mathrm{~J}$ - No penalty.
Final answer 8 J or $8 \cdot 15761 \mathrm{~J}$ - Deduct $1 / 2$ mark.
Candidates should be penalised for a final answer that includes:

- three or more figures too many or
- two or more figures too few. ie accept two higher and one lower.

Max $1 / 2$ mark deduction per question. Max $2^{1 / 2}$ deduction from question paper.
(m) Squaring Error

$$
\begin{array}{ll}
E_{K}=1 / 2 m v^{2}=1 / 2 \times 4 \times 2^{2}=4 \mathrm{~J} & \text { Award } 11 / 2 \quad \text { Arith error } \\
E_{K}=1 / 2 m v^{2}=1 / 2 \times 4 \times 2=4 \mathrm{~J} & \text { Award } 1 / 2 \text { for formula. Incorrect substitution. }
\end{array}
$$

The General Marking Instructions booklet should be brought to the markers' meeting.

Physics - Marking Issues

The current in a resistor is 1.5 amperes when the potential difference across it is $7 \cdot 5$ volts. Calculate the resistance of the resistor.

Answers

1. $\quad V=I R$

$$
7 \cdot 5=1 \cdot 5 R
$$

$$
R=5 \cdot 0 \Omega
$$

2. $5 \cdot 0 \Omega$
3. $5 \cdot 0$
$4 . \quad 4 \cdot 0 \Omega$
4. \qquad Ω

$$
R=\frac{V}{I}=\frac{7 \cdot 5}{1.5}=4.0 \Omega
$$

7.

$$
R=\frac{V}{I}=4.0 \Omega
$$

8.

$$
R=\frac{V}{I}=_\Omega
$$

9.

$$
R=\frac{V}{I}=\frac{7 \cdot 5}{1.5}=
$$

10.

$$
R=\frac{V}{I}=\frac{7 \cdot 5}{1 \cdot 5}=4 \cdot 0
$$

11.

$$
R=\frac{V}{I}=\frac{1 \cdot 5}{7 \cdot 5}=5 \cdot 0 \Omega
$$

12.

$$
R=\frac{V}{I}=\frac{75}{1.5}=5.0 \Omega
$$

13.

$$
R=\frac{I}{V}=\frac{7 \cdot 5}{1 \cdot 5}=5 \cdot 0 \Omega
$$

14.

$$
\begin{aligned}
& V=I R \quad 7 \cdot 5=1 \cdot 5 \times R \\
& R=0 \cdot 2 \Omega
\end{aligned}
$$

15.

$$
V=I R
$$

$$
R=\frac{I}{V}=\frac{1 \cdot 5}{7 \cdot 5}=0 \cdot 2 \Omega
$$

Mark + comment

(1/2)
(1/2)
(1)
(2) Correct Answer
(1½) Unit missing
(0) No evidence/Wrong Answer
(0) No final answer
(112) Arithmetic error
(1/2) Formula only
(1⁄2) Formula only
(1) Formula + subs/No final answer
(1) Formula + substitution
(1/2) Formula but wrong substitution
(1/2) Formula but wrong substitution
(0) Wrong formula
(11⁄2) Arithmetic error
(1⁄2) Formula only

Issue

Ideal Answer

GMI 1
GMI 2(a)

GMI 1
GMI 1

GMI 7

GMI 4 and 1

GMI 4 and 1

GMI 4 and 1

GMI 2(a) and 7

GMI 5

GMI 5

GMI 5

GMI 7

GMI 20

Data Sheet

Common Physical Quantities

Refractive Indices

The refractive indices refer to sodium light of wavelength 589 nm and to substances at a temperature of 273 K.

Substance	Refractive index	Substance	Refractive index
Diamond	2.42	Glycerol	1.47
Glass	1.51	Water	1.33
Ice	1.31	Air	1.00
Perspex	1.49	Magnesium Fluoride	1.38

Spectral Lines

Element	Wavelength/nm	Colour	Element	Wavelength/nm	Colour
Hydrogen	$\begin{aligned} & 656 \\ & 486 \\ & 434 \end{aligned}$	Red Blue-green Blue-violet Violet Ultraviolet Ultraviolet	Cadmium	$\begin{aligned} & 644 \\ & 509 \\ & 480 \\ & \hline \end{aligned}$	Red Green Blue
	410		Lasers		
	$\begin{aligned} & 397 \\ & 389 \end{aligned}$		Element	Wavelength/nm	Colour
Sodium	589	Yellow	Carbon dioxide Helium-neon	$\left.\begin{array}{r} 9550 \\ 10590 \\ 633 \end{array}\right\}$	Infrared Red

Properties of selected Materials

Substance	$\begin{aligned} & \hline \text { Density/ } \\ & \mathrm{kg} \mathrm{~m}^{-3} \end{aligned}$	Melting Point/K	Boiling Point/K	Specific Heat Capacity/ $\mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$	Specific Latent Heat of Fusion $/ \mathrm{Jkg}^{-1}$	Specific latent Heat of Vaporisation/ Jkg^{-1}
Aluminium	2.70×10^{3}	933	2623	9.02×10^{2}	3.95×10^{5}	\ldots
Copper	8.96×10^{3}	1357	2853	3.86×10^{2}	2.05×10^{5}
Glass	2.60×10^{3}	1400	\ldots	6.70×10^{2}	\ldots
Ice	9.20×10^{2}	273	\ldots	$2 \cdot 10 \times 10^{3}$	3.34×10^{5}	
Gylcerol	1.26×10^{3}	291	563	2.43×10^{3}	1.81×10^{5}	8.30×10^{5}
Methanol	7.91×10^{2}	175	338	2.52×10^{3}	9.9×10^{4}	$1 \cdot 12 \times 10^{6}$
Sea Water	1.02×10^{3}	264	377	3.93×10^{3}	\cdots	
Water	1.00×10^{3}	273	373	$4 \cdot 19 \times 10^{3}$	3.34×10^{5}	$2 \cdot 26 \times 10^{6}$
Air	1.29	\ldots		
Hydrogen	9.0×10^{-2}	14	20	1.43×10^{4}	4.50×10^{5}
Nitrogen	1.25	63	77	1.04×10^{3}	2.00×10^{5}
Oxygen	1.43	55	90	9.18×10^{2}	\ldots	2.40×10^{5}

The gas densities refer to a temperature of 273 K and pressure of $1.01 \times 10^{5} \mathrm{~Pa}$.

Section A

	sti		Expected Answer/s		Max Mark	Additional Guidance
1	a	i	$\begin{aligned} & m=\frac{m_{0}}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \\ & 1.8=\frac{1}{\sqrt{1-\frac{v^{2}}{\left(3 \times 10^{8}\right)^{2}}}} \\ & v=2.5 \times 10^{8} \mathrm{~ms}^{-1} \end{aligned}$	(1/2) (1/2) (1)	2	Look out for correctly calculating m. $\mathrm{m}=1.8 \times 9.11 \times 10^{-31}=1.64 \times 10^{-30} \mathrm{~kg}$
1	a	ii	$E=m c^{2}$ $\begin{aligned} & E=1.8 \times 9.11 \times 10^{-31} \times\left(3.0 \times 10^{8}\right)^{2} \\ & E=1.5 \times 10^{-13} \mathrm{~J} \end{aligned}$	(1/2) (1/2) (1)	2	Must have correct mass
1	a	iii	Weak (force)	(1)	1	
1	b	i	Electron Diffraction Interference Fire electrons through crystals Thomson-Reid Experiment	(1)	1	Young's/ Double Slit (1) Bending (0) If explanation contradicts the example then WP (0) Defraction (0)
1	b	ii	Compton Effect Photoelectric effect e/m experiment electrons deflected in a deflection tube electron's back scattering		1	Electrons repel (1) Any indication of Force due to electrostatic effects (1) Electrons can be accelerated (1) Electrons have mass/charge / momentum (0) Nuclear Fission (0) If explanation contradicts the example then WP (0) Milikan's oil drop (0) Rutherford's expt (0) Defract (0) Must describe an effect

Question			Expected Answer/s		Max Mark	Additional Guidance
2	a	i	$\begin{align*} & a=\frac{d v}{d t} \\ & \int d v=\int a \cdot d t \quad \text { or } \quad \int \frac{d v}{d t} d t=\int a \cdot d t \tag{1/2}\\ & v=a t+c \end{align*}$ at $t=0, c=u$ Must be specific with respect to time $v=u+a t$ SHOW ME	(1/2) (1/2) (1)	2	$\begin{aligned} & a=\frac{d v}{d t} \\ & \int_{u}^{v} d v=\int_{0}^{t} a \cdot d t \end{aligned}$ $1 / 2$ for integrals, $1 / 2$ for limits need both before can progress $\begin{equation*} [v]_{u}^{v}=[a t]_{0}^{t} \tag{1/22} \end{equation*}$ $\begin{equation*} v-u=a t(-0) \tag{1/2} \end{equation*}$ $v=u+a t$
2	a	ii	$\begin{aligned} & v^{2}=(u+a t)(u+a t) \\ & v^{2}=u^{2}+2 u a t+a^{2} t^{2} \\ & v^{2}=u^{2}+2 a\left(u t+\frac{1}{2} a t^{2}\right) \\ & v^{2}=u^{2}+2 a s \quad \text { SHOW ME } \end{aligned}$	$\begin{aligned} & (1 / 2) \\ & (1 / 2) \end{aligned}$	1	SHOW ME Starting with $s=u t+1 / 2 a t^{2}$ $1 / 2$ for substitution for t $1 / 2$ for manipulation Check second line both a and t are squared.
2	b	i	$s=\frac{1}{2} \times 29.8=14.9 \mathrm{~m}$ $v^{2}=u^{2}+2 a s$ $9.64^{2}=0^{2}+2 \times a \times 14.9$ $a=3.12 \mathrm{~ms}^{-2}$	(1/2) (1/2) (1)	2	

Question			Expected Answer/s		Max Mark 2	Additional Guidance Accept π in final answer $\omega=1.52 \pi$
3	a	i	$\begin{aligned} & y=\mathrm{A} \sin \omega t \text { or } y=\mathrm{A} \cos \omega t \\ & \omega=2 \pi f \\ & \omega=2 \pi \times 0.76 \\ & \omega=4.8\left(\mathrm{rad} \mathrm{~s}^{-1}\right) \\ & A=0.18(\mathrm{~m}) \\ & y=0.18 \sin 4.8 t \\ & \text { Or } \\ & y=0.18 \cos 4 \cdot 8 t \end{aligned}$	(1/2) (1/2) (1/2) (1/2)		
3	a	ii	$\begin{aligned} & g=(\pm) A \omega^{2} \\ & 9.8=A \times 4.8^{2} \\ & A=0.43 \mathrm{~m} \mathrm{SHOW} \mathrm{ME} \end{aligned}$	$(1 / 2)$ $(1 / 2)$	1	Must start with the equation $a=(\pm) A \omega_{(1 / 2)}^{2}$ Value of g must appear OK to calculate a using $\mathrm{A}=0.43$
3	b	i	Assume diver 2 rods about one end 33.0 kg per rod $\begin{align*} & I=\frac{1}{3} m l^{2} \tag{1}\\ & I=\frac{1}{3} \times 33.0 \times 0.90^{2}=8.9\left(\mathrm{~kg} \mathrm{~m}^{2}\right) \tag{1}\\ & I=\frac{1}{3} \times 33.0 \times 0.94^{2}=9.7\left(\mathrm{~kg} \mathrm{~m}^{2}\right) \tag{1}\\ & I=18.6 \mathrm{~kg} \mathrm{~m}^{2} \end{align*}$	(1/2) (1/2) (1/2) (1/2) (1)	3	NB 3 mark question Accept r instead of l in equations Acceptable to use $I=\frac{1}{12} m l^{2}$ $I=\frac{1}{12} \times 66.0 \times 1.84^{2}$ $I=18.6 \mathrm{~kg} \mathrm{~m}^{2}$ Cannot use an average length
3	b	ii	Some indication of uneven mass distribution.	(1)	1	Diver not rigid (0). Distribution of weight (0). Consideration of uneven length(0)
3	b	iii	$\begin{aligned} & (L=) I_{1} \omega_{1}=I_{2} \omega_{2} \\ & 10.25 \times 0.55=7.65 \times \omega_{2} \\ & \omega_{2}=0.74 \mathrm{rad} \mathrm{~s}^{-1} \end{aligned}$	(1/2) (1/2) (1)	2	

Question			Expected Answer/s		Max Mark 2	Additional Guidance
3	c	i	$\begin{aligned} & E_{\text {krot }}=\frac{1}{2} I_{1} \omega_{1}^{2} \\ & E_{\text {krot }}=\frac{1}{2} I_{2} \omega_{2}^{2} \\ & \frac{1}{2} \times 10.25 \times 0.55^{2}=1.55 \mathrm{~J} \\ & \frac{1}{2} \times 7.65 \times 0.74^{2}=2.09 \mathrm{~J} \\ & \Delta E_{\text {krot }}=0.54 \mathrm{~J} \end{aligned}$	(1/2) ($1 / 2$) for either (1)		NB Only 2 marks Accept 1.6 J Accept 2.1 J Depending on rounding can be 0.527 to 0.55 J Accept if negative change in $\Delta \mathrm{E}_{\text {krot }}$
3	c	ii	Work is being done by the diver	(1)	1	Energy provided by diver or equivalent Diver pulls his legs in (1)

Question			Expected Answer/s		Max Mark 1	Additional Guidance$g=\frac{F}{m}$$g=\frac{G M m}{m r^{2}}$
4	a		$m g=\frac{G M_{p} m}{r^{2}}$ SHOW ME	(1/2) both equations $(1 / 2)$ for equating		
4	b	i	$g=\frac{G M}{r^{2}}$ from graph $r=1.2 \times 10^{6} \mathrm{~m}$ $g=\frac{6.67 \times 10^{-11} \times 1.27 \times 10^{22}}{\left(1.2 \times 10^{6}\right)^{2}}$ $g=0.59 \mathrm{~N} \mathrm{~kg}^{-1} \text { or } m s^{-2}$	(1/2) (1/2) (1)	2	Accept 7.06 or 7.00 $\begin{aligned} & V=-\frac{G M}{r} \\ & V=-\frac{6.67 \times 10^{-11} \times 1.27 \times 10^{22}}{\left(1.2 \times 10^{6}\right)} \\ & V=-7.06 \times 10^{5} \\ & g=-\frac{V}{R_{p}} \\ & g=-\frac{-7.06 \times 10^{5}}{1.2 \times 10^{6}} \\ & g=0.58 \mathrm{~N} \mathrm{~kg} \end{aligned}$ If not double negative then WP $1 / 2$ for both formula $1 / 2$ for both substitutions 1 for final answer
4	b	ii	$E=-\frac{G M m}{r}$ $\begin{align*} & E=-\frac{6.67 \times 10^{-11} \times 1.27 \times 10^{22} \times 112}{1.80 \times 10^{6}} \tag{1/2}\\ & E=-5.27 \times 10^{7} \mathrm{~J} \end{align*}$	(1/2) (1/2) (1)	2	No negative in equation (0) No negative in sub ($1 / 2$) max No negative in answer ($11 / 2$) max Or from the graph accept values of V from -4.7 to -4.8 $\begin{align*} & E=V m \tag{1/2}\\ & E=-4.8 \times 10^{5} \times 112 \mathrm{~J} \end{align*}$ Range $\begin{align*} & E=-5.26 \text { to }-5.4 \times 10^{7} \mathrm{~J} \\ & V=-\frac{G M m}{r} \tag{0} \end{align*}$

Question		Expected Answer/s		Max Mark	Additional Guidance
4	c	$1.96 \times 10^{7}-x$ $\begin{aligned} & \frac{G M_{p} m}{x^{2}}=\frac{G M_{c} m}{\left(1.96 \times 10^{7}-x\right)^{2}} \\ & \frac{7}{1}=\frac{M_{p}}{M_{c}} \text { or } \mathrm{M}_{\mathrm{C}}=1.81 \times 10^{21} \\ & \frac{7}{1}=\frac{x^{2}}{\left(1.96 \times 10^{7}-x\right)^{2}} \\ & x=1.42 \times 10^{7} \mathrm{~m} \text { from Pluto } \end{aligned}$	(1/2) (1/2) (1/2) (1/2) (1)	3	If subscripts on M's and r's then can get $(1 / 2)$ for equating two forces. Ignore loose subscripts on masses if denominators OK $\frac{x^{2}}{y^{2}}=\frac{7}{1}$ (2 marks if $\mathrm{x}+\mathrm{y}=1.96 \times 10^{7}$ defined) Ensure masses are above the correct denominator $x=1.42 \times 10^{7} \mathrm{~m} \text { from Pluto }$

Question			Expected Answer/s		Max Mark 1	Additional Guidance
6	a	i	(Point) Q	(1)		
6	a	ii	$B q v=\frac{m v^{2}}{r}$ $\frac{q}{m}=\frac{v}{r B}$	(1)	1	SHOW ME Deduct ($1 / 2$) for any subsequent mistakes
6	a	iii	$\begin{aligned} & q / m=\frac{v}{r B} \\ & =\frac{2.29 \times 10^{6}}{0.0190 \times 2.50} \\ & =4.82 \times 10^{7}\left(\mathrm{Ckg}^{-1}\right) \end{aligned}$ Alphaparticle $q / m=\frac{3.20 \times 10^{-19}}{6.645 \times 10^{-27}}$ $=4.82 \times 10^{7}\left(\mathrm{Ckg}^{-1}\right)$ Particle is alpha	(1/2) (1/2) (1⁄2) (1/2) (1)	3	Calculation (2) Statement (1) Calculations independent Do not penalise for wrong unit. Justification needed for this mark
6	a	iv	$\begin{equation*} t=d / v \tag{1} \end{equation*}$ $=\pi r / v=\frac{3.14 \times 0.019}{2.29 \times 10^{6}}$ $=2.61 \times 10^{-8} \mathrm{~s}$	(1/2) (1/2) (1)	2	Calculation of T (1) $\mathrm{t}=\mathrm{T} / 2$ $v=r \omega, \theta=\omega t \quad$ both $(1 / 2)$ Both substitutions (1/2) If s rounded $\mathrm{t}=2.62 \times 10^{-8} \mathrm{~s}$
6	a	v	t is constant both v and \mathbf{r} double or directly proportional	(1) (1)	2	As v doubles, r doubles $t=d / v=2 \pi r_{1} / 2 v_{1}=\pi r_{1} / v_{1}$ as before Not enough to say rincreases
6	b	i	Particle is negatively charged	(1)	1	Smaller charge (0)
6	b	ii	Charge to mass ratio is smaller	(1)	1	Must be \mathbf{q} / \mathbf{m} not \mathbf{m} / \mathbf{q}

Question			Expected Answer/s		Max Mark	Additional Guidance
7	a	i	$\begin{aligned} & \lambda=\frac{h}{p} \\ & =\frac{6.63 \times 10^{-34}}{6.26 \times 10^{-29}} \\ & =1.06 \times 10^{-5} \mathrm{~m} \end{aligned}$	(1/2) (1/2) (1)	2	NB 3 sig fig is correct so 1×10^{-5} is max ($1^{1 / 2}$)
7	a	ii	If an e.m.f. of $\pm 0.1 \mathrm{~V}$ is induced when the current is changing at the rate of $1 \mathrm{~A} \mathrm{~s}^{-1}$, the inductance is 0.1 H .	(1)	1	Or equivalent, eg 1 V for $10 \mathrm{~A} \mathrm{~s}^{-1}$
7	b	i	Magnetic field strength increases and reaches a maximum value/levels off	$\begin{aligned} & (1 / 2) \\ & (1 / 2) \end{aligned}$	1	Any mention of magnetic field strength decreasing/ changing (0)
7	b	ii	At $t=0, d I / d t=4.0 \mathrm{~A} \mathrm{~s}^{-1}$. At this time $E=-12 \mathrm{~V}$ $\begin{aligned} & E=-L d I / d t \\ & -12=-L \times 4 \\ & L=3.0 \mathrm{H} \end{aligned}$	(1/2) (1/2) (1)	2	Accept L=12/4 assume cancelled
7	b	iii	 Maximum current $=E / R t=12 / 10=1.2 \mathrm{~A}$ Maximum p.d. across 8Ω $=1.2 \times 8=9.6 \mathrm{~V}$	(1) (1/2) (1/2)	2	If general trend of graph wrong (0) Labels $=0,1.4-1.6, \mathrm{t}(\mathrm{s}), \mathrm{V}(\mathrm{V})(1 / 2)$ Value of V missing or incorrect maximum (1) mark Must have origin for labelled for labels marked. Accept 1.6 s Or use voltage divider to find V $V_{8 \Omega}=\frac{8}{10} \times 12=9.6 \mathrm{~V}$

Question			Expected Answer/s		Max Mark	Additional Guidance
7	b	iv	$\begin{aligned} & \mathrm{E}=\frac{1}{2} L I^{2} \\ & =0.5 \times 3 \times 1.2^{2} \\ & =2.2 \mathrm{~J} \end{aligned}$	(1/2) (1/2) (1)	2	Look out for carry forward of wrong answer Must have current $=1.2 \mathrm{~A}$, cannot carry through wrong current
7	c		Reading on A_{1} will increase as (capacitive) reactance decreases/ I $\propto f$ Reading on A_{2} will decrease as inductive reactance increases/ I $\propto 1 / \mathrm{f}$	$\begin{aligned} & (1 / 2) \\ & (1 / 2) \\ & (1 / 2) \\ & (1 / 2) \end{aligned}$	2	Alternative answer A_{1} at higher frequencies the current drop in each half cycle is less. A_{2} back emf increases Impedence OK Resistance not OK

Question			Expected Answer/s		Max Mark 2	Additional Guidance
8	a		$\begin{aligned} & B=\frac{\mu_{0} I}{2 \pi r} \\ & =\frac{4 \times \pi \times 10^{-7} \times 25}{2 \times 3.14 \times 0.006} \\ & =8.3 \times 10^{-4} \mathrm{~T} \end{aligned}$	(1/2) (1/2) (1)		
8	b	i	(The current in each wire produces) a magnetic field. Same direction of the magnetic fields between the wires. OR interpretation of $\mathrm{F}=\mathrm{BI} l$	(1) (1)	2	May use diagrams Diagram (1) Explanation (1)
8	b	ii	$\begin{aligned} & \frac{F}{l}=\frac{\mu_{0} I_{1} I_{2}}{2 \pi r} \\ & =\frac{4 \times \pi \times 10^{-7} \times 25 \times I}{2 \pi r} \\ & =\frac{5.0 \times 10^{-6} I}{r} \quad \text { SHOW ME } \end{aligned}$	(1/2) (1/2)	1	SHOW ME Must show $\mu_{0}=4 \pi \times 10^{-7}$ or 12.56×10^{-7}
8	b	iii	Weight per unit length $=5.7 \times 10^{-3} \times 9.8$ $=0.056\left(\mathrm{Nm}^{-1}\right)$ $\frac{5.0 \times 10^{-6} I}{0.006}=0.056$ $I=67 \mathrm{~A}$	(1/2) (1/2) (1) (1)	3	If there is no calculation or value for weight (0)

Question			Expected Answer/s		Max Mark	Additional Guidance
9	a	i	Read from the graph $\lambda=0.25 \mathrm{~m}$	(1)	1	No tolerance
9	a	ii	Read from the graph $A=0.58 \mathrm{~m}$	(1)	1	$\begin{aligned} & \text { accept } 0.57 \text { to } 0.585 \mathrm{~m}(1) \\ & 0.6 \mathrm{~m}(0) \end{aligned}$
9	a	iii	$\begin{aligned} & v=f \lambda \\ & 1.25=f \times 0.25 \\ & f=5.0 \mathrm{~Hz} \end{aligned}$	(1)	1	1 mark for the answer Can be carry through from 9ai
9	a	iv	$\begin{gathered} \varnothing=\frac{2 \pi x}{\lambda} \\ \varnothing=\frac{2 \pi \times(0.44-0.25)}{0.25} \end{gathered}$ Phase angle $=1.5 \pi=4.7(\mathrm{rad})$	(1/2) (1/2) (1)	2	Or $3 / 4 \times 2 \pi \mathrm{rad}$ or $3 \pi / 2$ No tolerance in reading from graph accept 4.77 or 4.78 or 4.8 Answer not required but incorrect unit ($-1 / 2$) e.g. rads Can be carry through from 9ai
9	b		$y=(\pm) 0.58 \sin 2 \pi\left(5.0 t-\frac{x}{0.25}\right)$	(2)	2	If not travelling wave equation (1) max for A and ω Accept $\begin{aligned} & y=(\pm) 0.58 \sin (31 t-25 x) \\ & y=(\pm) 0.58 \sin 2 \pi(5.0 t-4.0 x) \\ & y=(\pm) 0.58 \sin (10.0 \pi t-8.0 \pi x) \end{aligned}$ ($1 / 2$) for A, ($1 / 2$) for t term, ($1 / 2$) for x term, $(1 / 2)$ for negative sign
9	c		$y=(\pm) 0.29 \sin (31 t+25 x)$	(1)	1	If not travelling wave equation $(1 / 2)$ max for A No requirement for same λ or f as part 9 b . $y=(\pm) 0.29 \sin 2 \pi\left(5.0 t+\frac{x}{0.25}\right)$ $(1 / 2)$ for 0.29 , $(1 / 2)$ for positive sign Accept 0.3 but not 0.30

Question			Expected Answer/s	Max Mark	Additional Guidance
10	a	i	$\begin{align*} & v=d s / d t \tag{1/2}\\ & =8.2 t \tag{1/2}\\ & =8.2 \times 2 \\ & =16 \mathrm{~m} \mathrm{~s}^{-1} \tag{1} \end{align*}$	2	$\bar{v}=\frac{s}{t}$ $v=2 \bar{v}$ both equations $(1 / 2)$ mark $\begin{aligned} & s=4.1 \times 2^{2}=16.4 \\ & \bar{v}=\frac{16.4}{2} \\ & v=2 \times 8.2 \\ & 16.4 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$
10	a	ii	Frequency is increasing/increases Waves become more and more squashed together as speed increases or time between wave continually decreasing	2	higher frequency (0) Frequency has increased (0) Can link to Doppler equation with v_{s} increasing
10	b		$\begin{align*} & f=\frac{v}{v-v s} \times f s \tag{1/2}\\ & =\frac{340}{340-16} \times 595 \tag{1/2}\\ & =624 \mathrm{~Hz} \tag{1} \end{align*}$	2	$f=625 \mathrm{~Hz} \text { with } v=16.4$ If carry through of $8.2 \mathrm{~ms}^{-1}$ in part 10ai then $\mathrm{f}=610 \mathrm{~Hz}$

