12/14/2007

Resistance

Georg Simon Ohm 1789-1854

Resistance is anything that will RESIST a current. It is measured in Ohms, a unit named after me.

Georg Simon Ohm 1789-1854

Resistance is anything that will RESIST a current. It is measured in Ohms, a unit named after me.

Georg Simon Ohm 1789-1854

The resistance of a component can be calculated using Ohm's Law:

Resistance is anything that will RESIST a current. It is measured in Ohms, a unit named after me.

Georg Simon Ohm 1789-1854

The resistance of a component can be calculated using Ohm's Law:

Resistance = Voltage (in V) (in Ω) Current (in A)

Resistance is anything that will RESIST a current. It is measured in Ohms, a unit named after me.

The resistance of a component can be calculated using Ohm's Law:

Resistance = Voltage (in V)(in Ω) Current (in A)

Georg Simon Ohm 1789-1854

An example question:

12/14/2007

12/14/2007

12/14/2007

12/14/2007

12/14/2007

12/14/2007

12/14/2007

Current-voltage graphs 12/14/2007

Current-voltage graphs 12/14/2007

Three simple components: 12/14/2007

Three simple components: 12/14/2007

1) Diode - only lets current flow in one direction

Three simple components:

1) Diode - only lets current flow in one direction

2) Light dependant resistor - resistance DECREASES when light intensity INCREASES

Three simple components:

1) Diode - only lets current flow in one direction

2) Light dependant resistor - resistance DECREASES when light intensity INCREASES

3) Thermistor - resistance DECREASES when temperature INCREASES