Examples of Potential Energy Problems

Study these sample problems and the methods used to solve them.

You might want to use this triangle to help you with questions involving potential energy.

Example:

A box has a mass of 5.8 kg . The box is lifted from the garage floor and placed on a shelf. If the box gains 145J of Potential Energy (E_{p}), how high is the shelf?

Solution:
Use

$$
\mathrm{E}_{\mathrm{p}}=\mathrm{mgh}
$$

$\mathrm{E}_{\mathrm{p}}=$ potential energy (Joules)
$\mathrm{m}=$ mass of box (kg)
$\mathrm{g}=\mathrm{gravitational}$ field strength (N / kg)
$\mathrm{h}=$ difference in height (m)
rearrange equation to find height
$h=\frac{E_{p}}{m g}=\frac{145}{5.8 \times 10}=\frac{145}{58}=2.5$

The shelf is 2.5 m high

Example:

A man climbs on to a wall that is 3.6 m high and gains 2268J of potential energy. What is the mass of the man?

Solution:

Use:

$$
E_{p}=m g h
$$

Rearrange to get an equation for m.
$m=\frac{E_{p}}{g h}=\frac{2268}{10 \times 3.6}=\frac{2268}{36}=63$
So the mass of the man is 63 kg .

Example:

A 800 g ball is pulled up a slope as shown in the diagram. Calculate the potential energy it gains.

Solution:
In potential energy problems we are only interested in vertical distances

Use $E_{p}=m g h$,
$\mathrm{h}=20 \mathrm{~cm}=0.2 \mathrm{~m}$
$\mathrm{m}=800 \mathrm{~g}=0.8 \mathrm{~kg}$
so

$$
E_{p}=0.8 \times 10 \times 0.2=1.6 \mathrm{~J}
$$

The ball gains 1.6 J of potential energy

