HIGHER PHYSICS

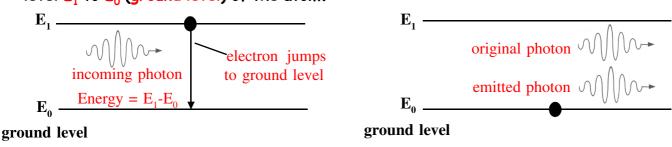
UNIT 3 - RADIATION and MATTER OPTO-ELECTRONICS 4) LASERS

You must be able to:

- State that an incoming photon (with energy equal to the difference in energy between levels E_1 and E_0 of an atom) stimulates an "excited" electron to jump from energy level E_1 to E_0 (ground level) of the atom, causing another identical photon to be emitted.
 - State that both photons are in phase and now travel in the same direction.
- State that the term LASER stands for Light Amplification by the Stimulated Emission of Radiation.
 - Explain the function of the two mirrors in a laser.
- State that laser light is monochromatic, coherent, parallel and has a very high irradiance.
 - Compare laser light to light from a filament lamp.
- Explain why a beam of laser light with a power of 0.1 mW can cause eye damage.

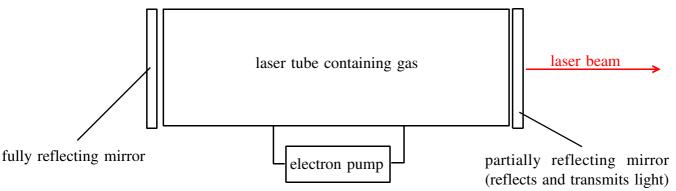
SPONTANEOUS and STIMULATED EMISSION

The transition of an electron in an atom from a higher energy level to a lower energy level with the emission of a photon can be either:


(a) Spontaneous

This is what happens during the production of the **line emission spectra** you have just studied. The process is <u>random</u> - We cannot predict when an electron will jump to a lower energy level, causing a photon to be emitted.

(b) Stimulated


This happens in a laser.

An incoming photon (with energy equal to the difference in energy between levels E_1 and E_0 of an atom) stimulates an "excited" electron to jump from energy level E_1 to E_0 (ground level) of the atom. Another <u>identical photon</u> (same frequency and energy) is emitted as a result. Both photons are in phase and travel in the same direction.

LASERS

The term <u>laser</u> stands for Light Amplification by the Stimulated Emission of Radiation.

In a laser, a gas is contained in a tube with a fully-reflecting silver mirror at one end and a partially-reflecting silver mirror at the other end.

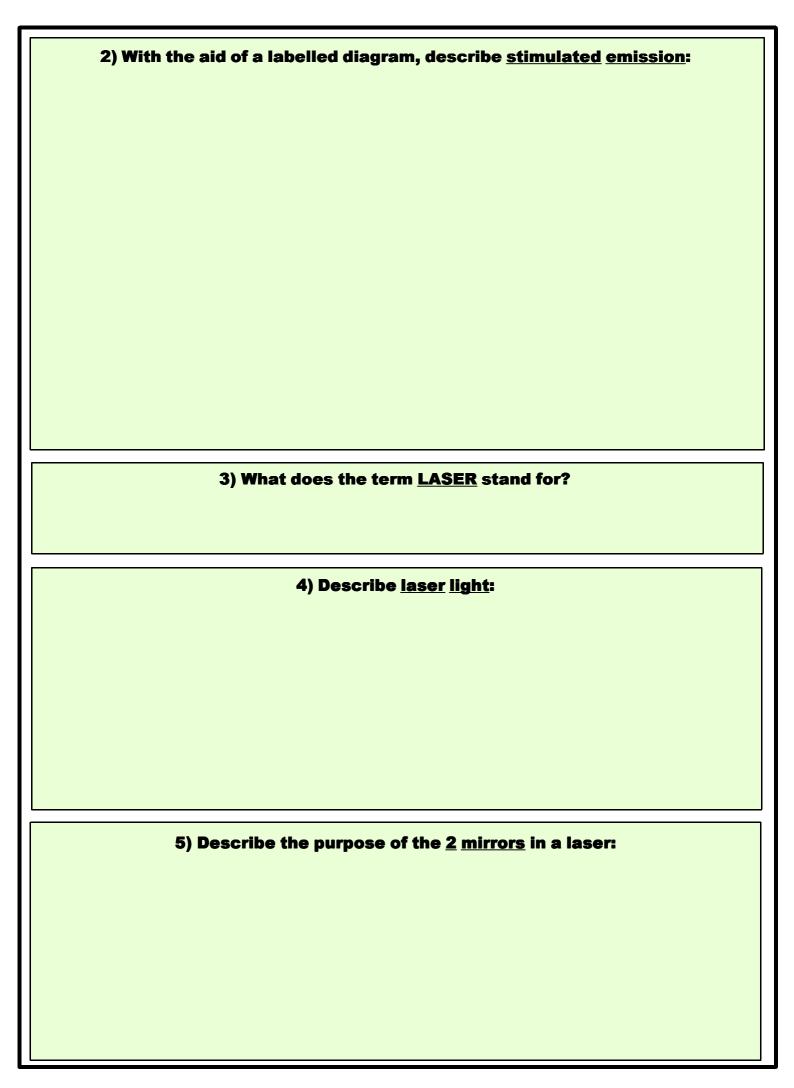
Photons produced by **stimulated emission** travel through the gas, **reflecting between the two mirrors**. The photons **stimulate more electrons** to jump from from excited energy level E₁ to the ground level E₀ of the gas atoms, producing more identical photons.

Some of the **photons** created **escape through the partially reflecting mirror into the air**, creating a <u>laser beam</u>.

The **electron pump** provides energy to the atoms in the gas, to raise their electrons back to energy level E_1 , so the stimulated emission process can carry on.

Comparing Laser Light and Light from a Filament Lamp

Filament lamp (light bulb)	Laser
Emits photons of all frequencies in the visible spectrum.	Laser light is monochromatic - all the photons have the same frequency .
Light is not coherent (the emitted photons are not in phase).	Laser light is coherent - all the photons are in phase .
Light spreads out in all directions - so has a low irradiance .	Laser light does not spread out - It is parallel . It has a very high irradiance - all the photons are concentrated in a very small area. THE LASER BEAM HAS A CIRCULAR CROSS-SECTION .


Laser Light and Eye Damage

Because a **laser beam** is **<u>parallel</u>** and has a <u>high</u> <u>irradiance</u>, it can cause serious damage to the human eye. For example:

Calculate the irradiance of a laser beam with typical power 0.1 mW (0.0001 W) which has a radius 0.5 mm (0.0005 m). Cross-section of laser beam. Radius = 0.0005 m. Cross-section of laser beam. $= 127 W m^{-2}$

An irradiance of 127 W m⁻² is sufficiently high to cause <u>severe eye damage</u>. It is far higher than the irradiance of light produced by a filament lamp (light bulb).

1)(a) Calculate the irradiance of this laser beam:	power = $0.1 \text{ mW} (0.0001 \text{ W})$
radius = 0.4 mr	n (0.0004 m)
(b) Explain whether the laser beam will be capabl	e of causing <u>eye</u> <u>damage</u> :

